Yang Li | Electrical Engineering | Best Researcher Award

Assoc. Prof. Dr. Yang Li | Electrical Engineering
| Best Researcher Award

Director at Forensic Science Institute China People’s Police University, China.

Dr. Li Yang is an Associate Professor at the China People’s Police University, specializing in electrical fire investigation and forensic evidence analysis. With a Ph.D. in Safety Science and Engineering from Xi’an University of Science and Technology and extensive research on arc faults, short-circuit initiation, and pyrolysis gas analysis, he has become a leading voice in electrical fire forensics. He serves on the Committee on Electrical Fire Safety of the China Fire Association and has led multiple national and provincial projects. Recognized as a Distinguished Teacher of Hebei Province in 2022, his contributions have significantly enhanced fire evidence identification technologies. He has also played a pivotal role in national training programs and technical innovations for fire investigators.

🌍 Professional Profile:

Scopus

🏆 Suitability for the Best Researcher Award :

Dr. Li Yang is a strong candidate for the Best Researcher Award due to his pioneering work in electrical fire investigation. His research advances the forensic science field through the development of intelligent identification technologies and fault simulation devices. He has been instrumental in leading key national and provincial projects, authoring technical patents, and contributing to cutting-edge publications. His academic leadership, combined with practical innovation, addresses critical safety concerns in fire investigation. Recognition by both academic institutions and the Ministry of Public Security underscores his impact. His ability to integrate science, engineering, and real-world application makes him not only a productive researcher but a transformative force in safety science.

🎓 Education :

Li Yang holds a Doctor of Philosophy in Safety Science and Engineering from Xi’an University of Science and Technology (2018–2022). Prior to that, he earned a Master of Science in Materials Science (2008–2011) and a Bachelor of Science in Fire Investigation (2004–2008), both from the China People’s Police University. His interdisciplinary educational background has equipped him with a solid foundation in forensic materials, fire safety engineering, and investigative techniques. This strong academic progression supports his current research and teaching in the field of electrical fire forensics and contributes to the training of future safety professionals in law enforcement and public safety sectors.

🏢 Work Experience :

Dr. Li Yang has served in various academic positions at the China People’s Police University since 2014. Currently an Associate Professor in the Investigation College (since 2020), he previously held positions in the Department of Fire Engineering. Over the years, he has been deeply involved in curriculum development, investigator training, and research supervision. His expertise has also been sought by national bodies such as the Ministry of Public Security, where he serves as a fire-related case investigation expert. He has combined teaching excellence with project leadership across government-funded and institutional research. His dual role as educator and researcher enables him to bridge academic knowledge with field application effectively.

🏅 Awards and Honors :

Dr. Li Yang has received numerous accolades for his contributions. Notably, he was honored as a Distinguished Teacher of Hebei Province in 2022 and selected as a Fire Investigation Expert by the Criminal Investigation Bureau of the Ministry of Public Security in 2020. He is a Committee Member on Electrical Fire Safety with the China Fire Association. His research earned the Third Prize from the Ministry of Public Security Science and Technology Award in 2019. These awards reflect both his academic excellence and societal impact. Through these honors, Dr. Yang has been recognized for his research leadership, technological innovation, and dedication to advancing fire safety practices across China.

🔬 Research Focus :

Dr. Li Yang’s research centers on electrical fire forensics, particularly the mechanisms behind short-circuit faults, arc-related ignition, and trace identification. He applies cutting-edge tools such as STA-FTIR-GC/MS to analyze pyrolysis gases from common materials in electrical systems, aiming to establish the forensic links between device failure and fire cause. His studies also examine the behavior of molten droplets, overcurrent wire degradation, and fault inversion modeling under variable environmental conditions. He leads national R&D programs and technical research projects focusing on intelligent identification technologies and early-warning mechanisms. His goal is to enhance fire evidence analysis reliability and improve training and tools for first responders and forensic investigators in China.

📊 Publication Top Notes:

🔥 Lin Q‑W, Li X, Li Y, Deng J, Man P‑R, Jia Y‑Z. Comparative investigation on thermo‑oxidative degradation and fire characteristics of flame‑retardant and non‑flame‑retardant polyvinyl chloride wires. Thermal Science and Engineering Progress. 2025;57:103210. • 📄 Cited X times

Lin Q‑W, Li Y, Man P‑R, Jin Y, Lyu H, Wang H, Zhao Y, Su W, Deng J. Effects of applied voltages on the occurrence features of short circuits in building cables exposed to constant radiation heat. Journal of Building Engineering. 2024;98:111038. • 📄 Cited Y times

🧪 Lin Q‑W, Li Y, Deng J, F‑F He, P‑R Man. Thermo‑oxidative degradation behavior of poly(vinyl chloride) insulation for new and overloaded wires via TG‑FTIR. Journal of Applied Polymer Science. 2024;141(39):e55994. • 📄 Cited Z times

🧯 Li Z, Lin Q‑W, Li Y, et al. Effect of the current on the fire characteristics of overloaded polyvinyl chloride copper wires. Polymers. 2022;14(21):4766.* • 📄 Cited A times

🔥 Lin Q‑W, Li Y, Deng J. Formation mechanism and microstructural analysis of blistering marks on overcurrent copper wires. Fire Safety Journal. 2024;150(Pt A):104268. • 📄 Cited B times

Li Y, Sun Y, Gao Y, et al. Analysis of overload‑induced arc formation and bead characteristics in a residential electrical cable. Fire Safety Journal. 2022;131:103626. • 📄 Cited C times

Javier Ramírez | Computational Mechanics | Best Researcher Award

Dr. Javier Ramírez | Mechanics |Best Researcher Award

Professor at Universidad de Chile, Chile.

Dr. Javier Ramírez Ganga is an Adjunct Professor at the Universidad de Chile’s Department of Mathematical Engineering and a Project Engineer at the Center for Mathematical Modeling (CMM). With a Ph.D. in Engineering Sciences specializing in Mathematical Modeling, his research bridges numerical methods and real-world applications in mining, hydrology, and inverse problems. He has co-authored impactful publications in prestigious journals and actively contributes to national research projects. His international research visits and collaborations, especially in France, highlight his global engagement. Dr. Ramírez’s innovative work in gradient damage models and control theory positions him as a leader in applied mathematics, making him a highly deserving candidate for the Best Researcher Award.

🌍 Professional Profile:

Orcid

🏆 Suitability for the Best Researcher Award

 

Dr. Javier Ramírez Ganga is a strong contender for the Best Researcher Award due to his significant contributions to computational mechanics, inverse problems, and applied mathematics. His academic path from a B.Sc. in Mathematics to a Ph.D. in Engineering Sciences with a focus on mathematical modeling demonstrates a deep commitment to interdisciplinary and application-driven research. His current roles as Adjunct Professor and Project Engineer at Universidad de Chile and the Center for Mathematical Modeling reflect leadership in impactful research environments.

🎓 Education 

Javier Ramírez Ganga earned his Ph.D. in Engineering Sciences with a focus on Mathematical Modeling from Universidad de Chile in 2021. His doctoral thesis addressed the numerical reconstruction of inverse problems for partial differential equations under the supervision of Jaime H. Ortega and Gino Montecinos. He previously completed a Mathematical Engineering degree in 2016 at Universidad de Santiago de Chile, where he developed numerical approximations for exact controls in the 2D heat equation. His academic journey began with a B.Sc. in Mathematics from the same institution in 2015. This strong mathematical foundation supports his interdisciplinary research, blending advanced theory with real-world computational modeling. His training reflects both academic excellence and practical problem-solving skills.

🏢 Work Experience 

Dr. Ramírez currently serves as an Adjunct Professor at the Universidad de Chile’s Department of Mathematical Engineering and as a Project Engineer at the CMM. Since 2020, he has contributed to several major national research projects, including FONDEF IDEA initiatives and the Advanced Center for Water Technologies (CAPTA), working on numerical methods for engineering applications. His supervisors include prominent researchers such as Jaime H. Ortega and James Mc Phee. Internationally, he conducted two research stays at Institut Fourier, Université Grenoble-Alpes, France. His expertise spans numerical modeling, applied mathematics, and inverse problems, enabling collaborations across engineering and environmental sciences. His experience demonstrates versatility and a sustained commitment to high-impact, interdisciplinary research.

🏅 Awards and Honors 

While specific awards are not listed, Dr. Javier Ramírez Ganga’s scholarly output and participation in prestigious research projects demonstrate a high level of academic recognition. His publications in Applied Mathematical Modelling and Mathematical Reports, along with presentations at major conferences like MassMin 2020, highlight the academic impact of his work. His repeated invitations for international research visits to the Institut Fourier, Université Grenoble-Alpes, signal his growing global reputation. His continued selection for competitive national projects such as FONDEF IDEA and CAPTA also reflects the confidence of Chile’s research funding bodies in his expertise. These accomplishments collectively suggest a trajectory of excellence and make him a strong candidate for future honors and distinctions.

🔬 Research Focus 

Dr. Javier Ramírez Ganga’s research centers on numerical analysis, control theory, and inverse problems in partial differential equations (PDEs), with strong applications in engineering and environmental modeling. His recent work includes gradient damage models for underground mining, CGO solutions for coupled conductivity equations, and inverse modeling for water technologies. He applies computational tools like Python, FreeFem++, and Matlab to simulate complex systems and propose efficient solutions for practical challenges. His interdisciplinary collaborations bridge applied mathematics, geophysics, and hydrology, contributing to innovation in sustainable mining and water resource management. By integrating mathematical rigor with engineering relevance, his work enhances the predictive power of simulations and informs policy and design in critical sectors.

📊 Publication Top Notes:

Journal Articles

Bonnetier, E., Gaete, S., Jofré, A., Lecaros, R., Montecinos, G., Ortega, J. H., Ramírez-Ganga, J., & San Martín, J. S. (2025). Gradient damage models for studying material behavior in underground mining. Applied Mathematical Modelling, 116171.

Lecaros, R., Montecinos, G., Ortega, J. H., & Ramírez-Ganga, J. (2022). CGO solutions for coupled conductivity equations. Mathematical Reports, 24(1–2), 217–220.

Conference Proceedings

Gaete, S., Jofré, A., Lecaros, R., Montecinos, G., Ortega, J. H., Ramírez-Ganga, J., & San Martín, J. S. (2020). A gradient damage model applied to underground mining methods. In MassMin 2020: Proceedings of the Eighth International Conference & Exhibition on Mass Mining. University of Chile.

Preprints

Bonnetier, E., Gaete, S., Jofré, A., Lecaros, R., Montecinos, G., Ortega, J. H., Ramírez-Ganga, J., & San Martín, J. S. (2020). A shear-compression damage model for the simulation of underground mining by block caving. arXiv preprint, arXiv:2012.11118.

Gaete, S., Jofré, A., Lecaros, R., Montecinos, G., Ortega, J. H., Ramírez-Ganga, J., & San Martín, J. S. (2020). A fast algorithm of the shear-compression damage model for the simulation of block caving. arXiv preprint, arXiv:2012.14776.