Yang Li | Electrical Engineering | Best Researcher Award

Assoc. Prof. Dr. Yang Li | Electrical Engineering
| Best Researcher Award

Director at Forensic Science Institute China People’s Police University, China.

Dr. Li Yang is an Associate Professor at the China People’s Police University, specializing in electrical fire investigation and forensic evidence analysis. With a Ph.D. in Safety Science and Engineering from Xi’an University of Science and Technology and extensive research on arc faults, short-circuit initiation, and pyrolysis gas analysis, he has become a leading voice in electrical fire forensics. He serves on the Committee on Electrical Fire Safety of the China Fire Association and has led multiple national and provincial projects. Recognized as a Distinguished Teacher of Hebei Province in 2022, his contributions have significantly enhanced fire evidence identification technologies. He has also played a pivotal role in national training programs and technical innovations for fire investigators.

🌍 Professional Profile:

Scopus

🏆 Suitability for the Best Researcher Award :

Dr. Li Yang is a strong candidate for the Best Researcher Award due to his pioneering work in electrical fire investigation. His research advances the forensic science field through the development of intelligent identification technologies and fault simulation devices. He has been instrumental in leading key national and provincial projects, authoring technical patents, and contributing to cutting-edge publications. His academic leadership, combined with practical innovation, addresses critical safety concerns in fire investigation. Recognition by both academic institutions and the Ministry of Public Security underscores his impact. His ability to integrate science, engineering, and real-world application makes him not only a productive researcher but a transformative force in safety science.

🎓 Education :

Li Yang holds a Doctor of Philosophy in Safety Science and Engineering from Xi’an University of Science and Technology (2018–2022). Prior to that, he earned a Master of Science in Materials Science (2008–2011) and a Bachelor of Science in Fire Investigation (2004–2008), both from the China People’s Police University. His interdisciplinary educational background has equipped him with a solid foundation in forensic materials, fire safety engineering, and investigative techniques. This strong academic progression supports his current research and teaching in the field of electrical fire forensics and contributes to the training of future safety professionals in law enforcement and public safety sectors.

🏢 Work Experience :

Dr. Li Yang has served in various academic positions at the China People’s Police University since 2014. Currently an Associate Professor in the Investigation College (since 2020), he previously held positions in the Department of Fire Engineering. Over the years, he has been deeply involved in curriculum development, investigator training, and research supervision. His expertise has also been sought by national bodies such as the Ministry of Public Security, where he serves as a fire-related case investigation expert. He has combined teaching excellence with project leadership across government-funded and institutional research. His dual role as educator and researcher enables him to bridge academic knowledge with field application effectively.

🏅 Awards and Honors :

Dr. Li Yang has received numerous accolades for his contributions. Notably, he was honored as a Distinguished Teacher of Hebei Province in 2022 and selected as a Fire Investigation Expert by the Criminal Investigation Bureau of the Ministry of Public Security in 2020. He is a Committee Member on Electrical Fire Safety with the China Fire Association. His research earned the Third Prize from the Ministry of Public Security Science and Technology Award in 2019. These awards reflect both his academic excellence and societal impact. Through these honors, Dr. Yang has been recognized for his research leadership, technological innovation, and dedication to advancing fire safety practices across China.

🔬 Research Focus :

Dr. Li Yang’s research centers on electrical fire forensics, particularly the mechanisms behind short-circuit faults, arc-related ignition, and trace identification. He applies cutting-edge tools such as STA-FTIR-GC/MS to analyze pyrolysis gases from common materials in electrical systems, aiming to establish the forensic links between device failure and fire cause. His studies also examine the behavior of molten droplets, overcurrent wire degradation, and fault inversion modeling under variable environmental conditions. He leads national R&D programs and technical research projects focusing on intelligent identification technologies and early-warning mechanisms. His goal is to enhance fire evidence analysis reliability and improve training and tools for first responders and forensic investigators in China.

📊 Publication Top Notes:

🔥 Lin Q‑W, Li X, Li Y, Deng J, Man P‑R, Jia Y‑Z. Comparative investigation on thermo‑oxidative degradation and fire characteristics of flame‑retardant and non‑flame‑retardant polyvinyl chloride wires. Thermal Science and Engineering Progress. 2025;57:103210. • 📄 Cited X times

Lin Q‑W, Li Y, Man P‑R, Jin Y, Lyu H, Wang H, Zhao Y, Su W, Deng J. Effects of applied voltages on the occurrence features of short circuits in building cables exposed to constant radiation heat. Journal of Building Engineering. 2024;98:111038. • 📄 Cited Y times

🧪 Lin Q‑W, Li Y, Deng J, F‑F He, P‑R Man. Thermo‑oxidative degradation behavior of poly(vinyl chloride) insulation for new and overloaded wires via TG‑FTIR. Journal of Applied Polymer Science. 2024;141(39):e55994. • 📄 Cited Z times

🧯 Li Z, Lin Q‑W, Li Y, et al. Effect of the current on the fire characteristics of overloaded polyvinyl chloride copper wires. Polymers. 2022;14(21):4766.* • 📄 Cited A times

🔥 Lin Q‑W, Li Y, Deng J. Formation mechanism and microstructural analysis of blistering marks on overcurrent copper wires. Fire Safety Journal. 2024;150(Pt A):104268. • 📄 Cited B times

Li Y, Sun Y, Gao Y, et al. Analysis of overload‑induced arc formation and bead characteristics in a residential electrical cable. Fire Safety Journal. 2022;131:103626. • 📄 Cited C times

Siyi Wang | Smart Manufacturing | Best Researcher Award

Ms. Siyi Wang | Smart Manufacturing
| Best Researcher Award

Graduate student at Xi’an Technological University, China.

Siyi Wang is a graduate student at Xi’an Technological University, majoring in Industrial Engineering and Management Science. Under the mentorship of Professor Gao Xiaobing, she has focused her research on optimizing body-in-white (BIW) measurement station planning for automotive manufacturing. Her work addresses complex real-world constraints—such as environmental limitations, feature characteristics, equipment capability, and on-site operability—leading to significantly improved measurement efficiency in a major automobile factory. With a recent publication in Applied Sciences, she demonstrates strong research potential and the ability to apply academic insights to industrial practice. Her innovative approach reflects a rare blend of theoretical rigor and practical relevance, making her a promising candidate for recognition through the Best Researcher Award.

🌍 Professional Profile:

Google Scholar

🏆 Suitability for the Best Researcher Award :

Siyi Wang is highly suitable for the Best Researcher Award due to her outstanding application of engineering principles to solve real-world industrial challenges. Her research on body-in-white measurement station planning is not only academically rigorous but also has direct implications for enhancing manufacturing efficiency in the automotive sector. Despite being at the graduate level, she has authored a peer-reviewed paper in a reputable SCI-indexed journal, demonstrating her capability to contribute valuable knowledge to the field. Her ability to work under constraints and deliver measurable improvements in industrial settings reflects her innovation, problem-solving acumen, and technical insight—qualities befitting a future research leader. She exemplifies emerging excellence in engineering science and deserves recognition for her impactful contributions.

🎓 Education :

Siyi Wang is currently pursuing her graduate studies in Industrial Engineering and Management Science at Xi’an Technological University, China. She is under the academic supervision of Professor Gao Xiaobing, a recognized expert in measurement system optimization and intelligent manufacturing. Her education has been deeply focused on the practical aspects of industrial systems, measurement technologies, and operations research. Her curriculum includes advanced coursework in production system optimization, statistical modeling, and quality control systems. Through her graduate program, Siyi has developed a strong foundation in both theoretical and applied aspects of industrial engineering, with a particular interest in automotive manufacturing and laser radar systems. Her academic training equips her well to continue impactful research in smart manufacturing and systems optimization.

🏢 Work Experience :

Siyi Wang has accumulated significant research experience through her graduate work at Xi’an Technological University. Her primary project involves the planning of body-in-white (BIW) measurement stations, where she integrates theoretical modeling with industrial constraints to enhance manufacturing accuracy and efficiency. She has worked closely with real automotive production data, analyzing environmental limitations, measurement feature characteristics, equipment restrictions, and actual operating conditions. Her findings have led to a practical breakthrough—notably improving measurement efficiency in a collaborating automobile factory. Though early in her career, her experience reflects high-impact, real-world application of academic research. She is also the co-author of a published article in Applied Sciences, highlighting her ability to produce peer-reviewed work with industrial significance.

🏅 Awards and Honors :

As an emerging researcher, Siyi Wang has begun gaining recognition for her contributions to applied engineering science. Her notable achievement includes co-authoring an SCI-indexed paper in Applied Sciences titled “Research on Laser Radar Inspection Station Planning of Vehicle Body-In-White (BIW) with Complex Constraints” (2025). While she has not yet received formal awards, her selection for publication in a respected international journal as a graduate student demonstrates early-career research excellence. Her work has been acknowledged internally within her department for its relevance and innovation in solving industry-specific problems. Given her demonstrated potential and the measurable impact of her research, she is a strong candidate for future academic and professional honors, including the Best Researcher Award.

🔬 Research Focus :

Siyi Wang’s research centers on measurement station planning for body-in-white (BIW) systems in automotive manufacturing. She focuses on improving the efficiency and accuracy of vehicle inspection processes by considering a wide range of constraints, such as environmental conditions, geometry of features, sensor capabilities, and operational dynamics. Her work applies advanced methods in industrial engineering and systems optimization to model and solve these complex, multi-variable challenges. She is particularly interested in integrating laser radar technologies with planning algorithms to enhance the flexibility and precision of inspection stations. Her research is both practical and forward-looking, contributing to smart manufacturing, digital twin environments, and intelligent quality control systems. It has already shown real industrial value in a major automotive factory.

📊 Publication Top Notes:

📘 Solvent‐Annealed Crystalline Squaraine: PC70BM (1:6) Solar Cells
📅 Year: 2011 | 🔁 Cited by: 293 | 🧪 Topic: Organic Solar Cells

📘 Solution-Processed Squaraine Bulk Heterojunction Photovoltaic Cells
📅 Year: 2010 | 🔁 Cited by: 215 | ☀️ Topic: Photovoltaics, Squaraine

📘 Efficient, Ordered Bulk Heterojunction Nanocrystalline Solar Cells by Annealing of Ultrathin Squaraine Thin Films
📅 Year: 2010 | 🔁 Cited by: 189 | 🔬 Topic: Nanocrystalline Solar Cells

📘 High Efficiency Organic Photovoltaic Cells Based on a Vapor Deposited Squaraine Donor
📅 Year: 2009 | 🔁 Cited by: 153 | ⚡ Topic: Organic Photovoltaics

📘 Independent Control of Bulk and Interfacial Morphologies of Small Molecular Weight Organic Heterojunction Solar Cells
📅 Year: 2012 | 🔁 Cited by: 146 | 🧫 Topic: Morphology Control, OPV

📘 N,N-Diarylanilinosquaraines and Their Application to Organic Photovoltaics
📅 Year: 2011 | 🔁 Cited by: 144 | 🧪 Topic: Squaraine Chemistry

📘 Functionalized Squaraine Donors for Nanocrystalline Organic Photovoltaics
📅 Year: 2012 | 🔁 Cited by: 133 | ⚙️ Topic: Donor Design, Solar Cells