Huakun Bi | Electrical Engineering | Best Researcher Award

Dr. Huakun Bi| Electrical Engineering
|Best Researcher Award

Lecturer at School of Electrical and Automation Engineering, Shandong University of Science and Technology, Qingdao, China.

 

Dr. Huakun Bi, a Lecturer at the School of Electrical and Automation Engineering, Shandong University of Science and Technology, is a prolific researcher in power electronics. He earned his Ph.D. from Tianjin University in 2020 and has since demonstrated significant academic and industrial contributions. With 17 research papers—12 SCI and 15 EI indexed—and multiple prestigious research projects, he has become a leading expert in DC-DC converters, electric vehicles, and DC microgrids. Dr. Bi’s innovative designs have enhanced voltage regulation and energy efficiency in electric vehicle systems. His high citation count, active role as a journal reviewer, and leadership in government- and industry-funded projects reflect outstanding research impact and make him an excellent candidate for the Best Researcher Award.


🌍 Professional Profile:

Scopus

Orcid

🏆 Suitability for the Best Researcher Award

 

Dr. Shahrzad Falahat exemplifies excellence in applied AI research, making her a highly suitable candidate for the Best Researcher Award. With a Ph.D. in Computer Vision and over five years of impactful industrial experience, she has led innovative projects that address critical real-world challenges. Her development of AI-powered fault detection software for power transmission lines reduced outages by 70%, while her automated cartography system cut map production time by 80%. She combines deep technical expertise in Python, PyTorch, TensorFlow, and embedded AI with strong project management and cross-sector collaboration. Her work integrates research and practice, resulting in scalable, intelligent solutions with tangible societal benefits, positioning her as a leader in the field of AI and computer vision.

🎓 Education 

Dr. Huakun Bi earned his Ph.D. in Electrical Engineering from Tianjin University, Tianjin, China, in 2020, where he conducted advanced research in power conversion technologies and electric transportation systems. His doctoral work focused on the design and optimization of DC-DC converters, especially for fuel cell and electric vehicle applications. His academic foundation includes rigorous training in circuit theory, control systems, and energy systems. During his doctoral studies, he led one independent innovation project and contributed to several national-level research initiatives. His education equipped him with a strong theoretical and practical understanding of modern electrical systems, laying the groundwork for his impactful contributions as a researcher and lecturer at the Shandong University of Science and Technology.

🏢 Work Experience 

Dr. Huakun Bi currently serves as a Lecturer at the School of Electrical and Automation Engineering, Shandong University of Science and Technology, Qingdao. Since earning his Ph.D. in 2020, he has taken on leadership roles in academic and industrial research, including projects funded by the Shandong Natural Science Foundation, State Grid Corporation of China, and Huaneng Group. He has contributed to three additional school-enterprise cooperation projects. Dr. Bi also acts as a dedicated reviewer for five international journals in electrical engineering. His dual involvement in academia and applied industrial projects demonstrates a versatile and impactful career. His research work is not only academically significant but also practically relevant, bridging the gap between theoretical advancements and real-world implementation.

🏅 Awards and Honors 

Dr. Huakun Bi’s research excellence is reflected in the high citation of his publications, notably in top-tier journals such as IEEE Transactions on Industrial Electronics and IEEE Transactions on Vehicular Technology. His 2019 publication has been cited 77 times, showcasing his work’s global impact. He has received recognition for his leadership in innovation projects at Tianjin University and has earned competitive funding from the Shandong Provincial Natural Science Foundation. Dr. Bi’s sustained contribution to national and industry-funded projects highlights the practical value of his research. His selection as a peer reviewer for multiple international journals further underscores his expertise and reputation in the field of power electronics and DC microgrids. These honors position him strongly for research excellence awards.

🔬 Research Focus 

Dr. Huakun Bi’s research primarily targets high-performance DC-DC converters, energy-efficient electric vehicles, and stable DC microgrid systems. His work addresses core challenges in power electronics, including input current ripple reduction, wide voltage-gain range, and voltage stress mitigation. By introducing advanced converter topologies such as capacitor-clamped and dual-mode negative output converters, he enhances performance for fuel cell and EV applications. Dr. Bi has also contributed significantly to government- and industry-funded projects, applying theoretical innovations to practical systems. His papers are frequently cited in top journals, and his designs serve critical roles in electric transportation and energy systems. Through pioneering control methods and hardware design strategies, Dr. Bi is driving forward the next generation of clean, efficient energy solutions.

📊 Publication Top Notes:

  1. Huakun Bi, Zonglei Mou, Yu Chen
    “Common Grounded Wide Voltage-Gain Range DC–DC Converter With Zero Input Current Ripple and Reduced Voltage Stresses for Fuel Cell Vehicles”
    Journal: IEEE Transactions on Industrial Electronics
    Year: 2023
    DOI: 10.1109/TIE.2022.3172767
    Citations: 23

  1. Huakun Bi, Bo Li, Ping Wang, Zhishuang Wang, Xiaochen Ma
    “A New Coupled-Inductor-Based High-Gain Interleaved DC-DC Converter With Sustained Soft Switching”
    Journal: IEEE Transactions on Vehicular Technology
    Year: 2021
    DOI: 10.1109/TVT.2021.3083317
    Citations: Not specified

  1. Huakun Bi, Cong Jia
    “Common Grounded Wide Voltage‐Gain Range DC–DC Converter for Fuel Cell Vehicles”
    Journal: IET Power Electronics
    Year: 2019
    DOI: 10.1049/iet-pel.2018.6234
    Citations: 16

  1. Guidan Li, Zhe Yang, Bin Li, Huakun Bi
    “Power Allocation Smoothing Strategy for Hybrid Energy Storage System Based on Markov Decision Process”
    Journal: Applied Energy
    Year: 2019
    DOI: 10.1016/j.apenergy.2019.03.001
    Citations: Not specified

  1. Huakun Bi, Ping Wang, Yu Che
    “A Capacitor Clamped H-Type Boost DC–DC Converter With Wide Voltage-Gain Range for Fuel Cell Vehicles”
    Journal: IEEE Transactions on Vehicular Technology
    Year: 2019
    DOI: 10.1109/TVT.2018.2884890
    Citations: 77

xian-ming Liu | Catalysts | Best Researcher Award

Dr. xian-ming Liu | Catalysts| Best Researcher Award

 

 

Dr. xian-ming Liu Lanzhou University, China .

Dr. Xianming Liu is a professor-level senior engineer in China, with a Ph.D. in Civil Engineering and Mechanics from Lanzhou University. With a strong academic and professional background, Dr. Liu has become a leading figure in his field, combining his expertise in material science, mechanical dynamics, and intelligent technology to advance both theoretical and practical applications. His work has led to significant contributions in the development of innovative materials and mechanical systems. He has held numerous positions, showcasing leadership in research and development, and mentoring the next generation of engineers. His dedication to cutting-edge research has earned him recognition and respect within the academic and professional communities.

🌍 Professional Profile:

Scopus

🎓 Education 

Dr. Xianming Liu obtained his Ph.D. in Civil Engineering and Mechanics from Lanzhou University, one of China’s premier institutions for engineering research. His academic journey equipped him with a comprehensive understanding of material science and mechanical dynamics, and he has applied this knowledge extensively in both his research and engineering practice. Throughout his education, Dr. Liu focused on the integration of intelligent technology with traditional engineering principles, allowing for the development of more efficient and sustainable engineering solutions. His academic pursuits laid the foundation for his future contributions to mechanical systems and material innovation, earning him recognition within both the academic and professional spheres.

🏢 Work Experience 

Dr. Xianming Liu has extensive experience in both academia and industry. As a professor-level senior engineer, he has contributed to numerous research projects and innovations in material science and mechanical dynamics. His expertise spans intelligent technology, where he has applied advanced computational methods to improve engineering designs. Dr. Liu has worked closely with engineering teams to develop cutting-edge solutions for various applications, particularly in the realm of construction materials and mechanical systems. He has also served as a mentor and advisor to postgraduate students, guiding them through research and development projects. His interdisciplinary experience has made him a prominent figure in bridging the gap between academic research and real-world engineering solutions.

🔬 Research Focus 

Dr. Xianming Liu’s research focuses on material science, mechanical dynamics, and the application of intelligent technology in engineering systems. His work aims to enhance the performance and sustainability of materials used in civil engineering applications, incorporating innovative techniques to optimize their mechanical properties. He is particularly interested in the dynamic behavior of materials under various loading conditions and how intelligent systems can be employed to predict and improve material performance. Additionally, Dr. Liu investigates the integration of smart technologies, such as artificial intelligence and sensors, into mechanical systems to monitor and optimize their functionality. His research seeks to develop solutions that contribute to more efficient, sustainable, and resilient engineering practices.

📊 Publication Top Notes:

New method for the preparation of cerium zirconium oxide for automobile exhaust gas catalysis

Fuel, 2025