Mr. Mahdi Zarnoush | Renewable Energy
| Best Researcher Award
Researcher at K. N. Toosi University of Technology, Iran.
Mahdi Zarnoush is a dedicated researcher in Mechanical Engineering at K. N. Toosi University of Technology, specializing in energy conversion, renewable energy, and energy storage systems. With a strong academic foundation and a passion for sustainable development, he has contributed to over 10 research projects and published four ISI-indexed journal papers, with additional work under review. His innovative research advances efficient and optimized energy solutions, aligning with global energy transition goals. As a journal reviewer and active member of scientific associations, he plays a pivotal role in maintaining academic integrity and excellence. His scholarly contributions and active engagement in the research community make him a compelling candidate for the Best Researcher Award.
🌍 Professional Profile:
🏆 Suitability for the Best Researcher Award :
Mahdi Zarnoush holds an M.Sc. in Mechanical Engineering with a specialization in Energy Conversion from K. N. Toosi University of Technology, a premier institution in Iran. He earned his B.Sc. in Mechanical Engineering from the University of Kashan, where he built a strong foundation in thermodynamics, fluid mechanics, and system design. During his graduate studies, Zarnoush focused on advanced energy systems, optimizing energy conversion processes and exploring renewable technologies. His academic path was marked by a commitment to research, sustainability, and innovation, enabling him to contribute meaningfully to both theoretical and applied aspects of energy engineering. His educational background provides the technical depth and scientific rigor necessary for impactful contributions in academia and industry alike.
🏢 Work Experience :
Mahdi Zarnoush is currently a Research Associate at K. N. Toosi University of Technology, where he has led and contributed to over ten academic research projects in energy systems and sustainable technologies. His expertise spans energy conversion, renewable integration, and energy storage modeling. Zarnoush has also served as a reviewer for reputable journals, such as the Journal of Energy Storage, reflecting peer recognition of his analytical skills and subject expertise. He collaborates with leading researchers on energy optimization projects and contributes regularly to the university’s Mechanical Engineering Scientific Association. His experience blends rigorous research with practical insight, advancing the development of efficient energy systems and contributing to the knowledge base in clean energy transitions.
🏅 Awards and Honors :
While formal awards are not currently listed, Mahdi Zarnoush’s academic recognition is reflected in his publication record, peer review contributions, and active involvement in leading research initiatives. His four published ISI-indexed journal papers and two under-review manuscripts have garnered increasing citations, indicating growing impact. His selection as a reviewer for high-impact journals like the Journal of Energy Storage speaks to his credibility and expertise in the field. Zarnoush’s participation in multiple high-level academic projects and his contribution to an upcoming book chapter further demonstrate his recognized value in the research community. His work continues to receive acknowledgment through scholarly collaboration, invitations for academic contributions, and consistent involvement in scientific development platforms.
🔬 Research Focus :
📘 Comparative evaluation of advanced adiabatic compressed gas energy storage systems
📅 Year: 2023 | 📊 Cited by: 43 | 📰 Journal of Energy Storage
📘 Comparative investigation for sustainable freshwater production in hybrid multigrid systems based on solar energy
📅 Year: 2024 | 📊 Cited by: 11 | 📰 Journal of Cleaner Production
📘 Integration of Emerging Technologies in Next-Generation Electric Vehicles: Evolution, Advancements, and Regulatory Prospects
📅 Year: 2025 | 📊 Cited by: 8 | 📰 Results in Engineering
📘 Comprehensive examination of a green hybrid biomass-integrated compressed air energy storage system with PEM hydrogen production across various operating modes
📅 Year: 2025 | 📊 Cited by: 2 | 📰 Journal of Energy Storage