Giovanni Morales | Energy | Best Researcher Award

Dr. Giovanni Morales | Energy | Best Researcher Award

Doctor at Industrial University of Santander | Colombia

Dr. Giovanni Morales Medina is an Associate Professor of Chemical Engineering at Universidad Industrial de Santander, Colombia. Teaching, research, and industrial experience, he specializes in process modeling, simulation, optimization, and techno-economic evaluation of chemical processes. His career integrates academic leadership, applied research, and consultancy for the Colombian Institute of Petroleum and Ecopetrol. Dr. Morales has published extensively in high-impact journals and presented at leading international conferences, advancing knowledge in carbon capture, molecular simulation, and sustainable energy processes. He has also contributed significantly to curriculum development and ABET accreditation. His blend of research innovation, academic excellence, and practical engineering solutions makes him an outstanding candidate for the Best Researcher Award.

Professional Profile 

Scopus

ORCID

Google Scholar

Suitability for the Best Researcher Award

Dr. Giovanni Morales Medina exemplifies excellence in research with impactful contributions to chemical engineering, energy transition, and process optimization. His expertise spans molecular simulation, artificial neural networks for process failure detection, and techno-economic assessments that support sustainable industrial practices. He has authored influential publications in journals such as The Journal of Physical Chemistry A, CT&F, and Waste and Biomass Valorization, and has presented at prestigious global conferences including AIChE and ECOS. Beyond publications, his work bridges academia and industry, delivering innovative solutions for petroleum refining, CO₂ capture, and renewable energy systems. His strong record of collaboration, knowledge dissemination, and applied innovation highlights his leadership in advancing chemical engineering research, making him a highly deserving recipient of the Best Researcher Award.

Education 

Dr. Giovanni Morales Medina earned his Ph.D. in Chemical Engineering  from Universidad Industrial de Santander (UIS), Colombia, where he also completed his B.Sc. in Chemical Engineering . His doctoral research centered on applying electronic structure calculations to study thermochemical properties, reaction mechanisms, and molecular modeling, laying the foundation for his expertise in simulation and computational chemistry. Complementing his academic degrees, he pursued specialized training in pedagogy, innovation in teaching, and engineering education, completing over 500 hours of certifications from UIS, SENA, and Universidad Jorge Tadeo Lozano. This strong educational background, blending advanced chemical engineering knowledge with modern teaching strategies, underpins his career as a researcher, educator, and consultant, equipping him to contribute to both scientific advancement and academic excellence.

Work Experience 

Dr. Morales has extensive professional experience spanning academia, industry, and consultancy. Since , he has served as Associate Professor at UIS, teaching process synthesis, simulation, and capstone design while contributing to ABET accreditation. Previously, he lectured in UIS’s Chemical Engineering and Refining & Petrochemical Master’s Program and held an associate professorship at Universidad Jorge Tadeo Lozano . In industry, he worked with Ecopetrol and the Colombian Institute of Petroleum (via TIP Ltda. and Ambiocoop Ltda.), focusing on molecular simulation, crude oil refining, and refinery optimization models. He also led projects on CO₂ capture, crude blending, and refinery planning. His diverse career reflects a unique integration of teaching, industrial innovation, and applied research across Colombia’s chemical engineering sector.

Awards and Honors

Dr. Morales has received recognition for his pioneering contributions to chemical engineering through numerous international presentations and intellectual property registrations. He has delivered oral and poster presentations at prestigious venues such as the AIChE Annual Meeting (USA), ECOS Conference (Greece), CLAQ (Colombia), and Canadian Conference on Computational Chemistry, reflecting the global relevance of his research. His registered software developments—CrudeExpert and CrudeOverlap—are innovative tools applied in petroleum refining, demonstrating his impact on industrial practice. Additionally, his involvement in ABET accreditation and curriculum development at UIS highlights his commitment to advancing engineering education. These achievements, coupled with his extensive publication record, position him as an influential researcher whose work has significantly contributed to both academia and industry in chemical engineering.

Research Focus 

Dr. Morales’s research focuses on process modeling, simulation, optimization, and sustainable energy systems. His expertise includes molecular dynamics and electronic structure calculations for analyzing reaction mechanisms, molecular properties, and carbon capture using liquids and solids. He has advanced the use of artificial neural networks for operational failure detection in chemical processes and applies techno-economic evaluation to assess energy transition technologies. His work bridges fundamental research with industrial applications, covering refinery optimization, virtual sensors, CO₂ management, and renewable resource valorization. By integrating computational chemistry, statistical data analysis, and advanced process simulation tools such as Aspen Plus, Aspen HYSYS, MATLAB, and GAMS, his research delivers innovative solutions to modern energy and environmental challenges, advancing the frontiers of chemical engineering.

Publication Top Notes

  • Mathematical model of a falling film reactor for methyl ester sulfonation
    Year: 2009 | Cited by: 23

  • Theoretical comparison of ketene dimerization in the gas and liquid phase
    Year: 2008 | Cited by: 19

  • Prediction of density and viscosity of Colombian crude oils from chromatographic data
    Year: 2012 | Cited by: 10

  • Thermochemical properties and contribution groups for ketene dimers and related structures from theoretical calculations
    Year: 2009 | Cited by: 10

  • Molecular and multiscale modeling: Review on the theories and applications in chemical engineering
    Year: 2009 | Cited by: 9

  • Ajuste de curvas de propiedades de crudos: nueva metodología e implementación en el módulo CrudeExpert
    Year: 2012 | Cited by: 4

Conclusion

Prof. Morales Medina is a highly suitable candidate for the Best Researcher Award. His strong record in chemical engineering research, innovation in modeling and simulation, and dedication to teaching and curriculum development make him stand out as both a scholar and mentor. With greater focus on international collaborations, wider dissemination of his work, and continuous pursuit of interdisciplinary research, he has the potential not only to lead within his field but also to shape future directions in sustainable chemical engineering.

Yongsheng Tian |Energy Resources | Best Researcher Award

Dr.YongshengTian |EnergyResources| Best Researcher Award

Lecturer at Shandong Jianzhu University, China

Dr. Yongsheng Tian is a Lecturer at Shandong Jianzhu University, China. His research interests include [specify key research areas if known]. He has published several research papers in reputed journals and has contributed to advancements in [mention specific fields if available]. Dr. Tian is actively involved in academic teaching and research, focusing on [relevant subjects].

Publication Profile

Scopus

Orcid

Education :

Dr. Yongsheng Tian holds a Doctor of Engineering degree with expertise in Energy and Power Engineering. As a master tutor, he has guided students in advanced research on thermal energy and heat transfer technologies.

Experience :

Dr. Tian serves as a Lecturer at Shandong Jianzhu University, specializing in thermal engineering. With over a decade of experience in academia and research, he has actively contributed to the field of heat transfer and energy storage. His extensive work includes leading multiple research projects and collaborating with industry professionals on thermal management solutions.

Research Focus :

Dr. Tian has developed a Battery Thermal Management System (BTMS) for heat preservation in low-temperature environments. The system leverages phase change materials and heat pipes for passive thermal management, significantly reducing the cooling rate of batteries in cold conditions. His research demonstrated that this solution extends battery cooling time by over 32.3%, thereby reducing the need for battery preheating. His contributions are crucial in improving energy efficiency and thermal stability in battery systems.

Skills:

Heat Transfer Enhancement and Flow Drag ReductionPhase Conversion Heat and Two-Phase FlowComputational Fluid Dynamics (CFD) Numerical Research and ApplicationHeat and Mass TransferThermal Management of Energy Storage BatteriesResearch Project ManagementScientific Writing and Journal Publications.

 

Publication :

  • Zhu, X., Zhou, S., Wang, C., Xiao, Q., Ma, F., & Tian, Y. (2024). Experimental Study on Battery Thermal Management of CPCM Coupled with Micro-Grooves Flat Heat Pipe at Low Temperature. SSRN. DOI: 10.2139/ssrn.5068945.

  • Zhou, S., Liu, X., Tian, Y., Zhang, C., Li, F., & Jiang, G. (2024). Multi-Fault Diagnosis of District Heating System Based on PCA_BP Neural Network. Process Safety and Environmental Protection. DOI: 10.1016/j.psep.2024.03.101.

  • Yang, L., Gai, D., & Tian, Y. (2023). Effect of Operating Temperature on Reverse Solute Flux in Forward Osmosis by Incorporating the Surface Charge Density. Desalination and Water Treatment. DOI: 10.5004/dwt.2023.29495.

  • Yang, L., Zhang, Q., Tian, Y., Zhang, L., & Zhang, H. (2023). Naturally Osmotic Water Transport Across Nanopores in Relation to Pore Diameters of Forward Osmosis Membrane. Journal of Nanoparticle Research. DOI: 10.1007/s11051-023-05714-5.

 

Conclusion

Dr. Tian’s expertise, research output, and industrial applications make him a strong contender for the Best Researcher Award. His work has a significant scientific and practical impact, addressing key challenges in thermal management and energy efficiency. With continued efforts in large-scale projects, patents, and international collaborations, he has the potential to make even greater contributions to his field.