Songtao Yu | Civil Engineering | Best Researcher Award

Assist. Prof. Dr. Songtao Yu | Civil Engineering
| Best Researcher Award

Department Head at Jiangxi university of sicence and technology, China.

Dr. Yu Songtao is the Dean of the Department of Emergency Management at the School of Emergency Management and Safety Engineering. He holds a Doctorate in Engineering and serves as a lecturer. His research centers on disaster prevention, mitigation, and emergency management. With experience leading and contributing to five national and ministerial-level research projects and several corporate collaborations, he has made significant academic and practical contributions. Dr. Yu serves as a director of the National Emergency Technology and Management Undergraduate Professional Colleges Alliance and is an active member of the Chinese Society for Rock Mechanics and Engineering. As a reviewer for top journals and the author of a monograph and over 20 academic papers, he plays a vital role in advancing emergency science.

🌍 Professional Profile:

Scopus 

🏆 Suitability for the Best Researcher Award :

Dr. Yu Songtao exemplifies excellence in research through his leadership in disaster prevention and emergency management. He has spearheaded multiple national and industry-level projects and has an impressive record of academic output, including a monograph and 20+ papers in recognized journals. His contributions extend beyond academia, influencing policy, education, and professional practice. As a reviewer for prominent international journals and a committee member in key national alliances, Dr. Yu is deeply embedded in the advancement of emergency science. His interdisciplinary approach, practical innovations, and dedication to educational reform reflect both scholarly impact and societal benefit, making him a highly suitable candidate for the Best Researcher Award in the fields of safety engineering and emergency management.

🎓 Education :

Dr. Yu Songtao earned his Doctorate in Engineering, specializing in safety science and emergency management. His academic background combines technical proficiency with an interdisciplinary understanding of disaster risk reduction, public safety systems, and emergency response frameworks. He has also undergone professional development in educational innovation, further enhancing his teaching capabilities. His formal training enables him to integrate engineering principles with real-world emergency management scenarios, providing both theoretical and applied knowledge. Through continuous academic engagement, he has built a foundation that supports both rigorous research and educational leadership in safety and emergency management. His academic journey is marked by a commitment to enhancing public resilience through informed engineering education and disaster risk research.

🏢 Work Experience :

Dr. Yu has held key roles in both academic and applied research contexts. As Dean and Lecturer, he leads the Department of Emergency Management, shaping curricula and research agendas. He has led or co-led five high-impact national and ministerial research projects and partnered with industry on three technical initiatives. Additionally, he has overseen three educational reform programs aimed at modernizing emergency management pedagogy. He contributes actively as a director and committee member in national professional alliances related to emergency response and slope stability. His role as a journal reviewer and frequent academic contributor reflects his status as a trusted expert in the field. These cumulative experiences position him as an authority in integrating theory and practice in emergency engineering.

🔹 Awards and Honors

Dr. Yu Songtao has been recognized for his outstanding service and research contributions in emergency management and safety engineering. While specific named awards are not detailed, his appointment as Director of the National Emergency Technology and Management Undergraduate Professional Colleges Alliance and his committee membership in the Chinese Society for Rock Mechanics and Engineering reflect significant peer recognition. His role as a reviewer for high-impact journals such as Construction and Building Materials, Sustainability, and Minerals further underscores his credibility. Additionally, his leadership in educational reform projects indicates institutional acknowledgment of his academic excellence and commitment to innovation. These distinctions collectively demonstrate his value to both scholarly and professional communities in disaster and emergency management.

🔬 Research Focus :

Dr. Yu Songtao’s research focuses on disaster prevention and mitigation, slope stability, and emergency management systems. He explores how engineering principles can be applied to enhance disaster resilience and emergency preparedness, with particular emphasis on risk evaluation, structural safety, and real-time response mechanisms. His work often bridges academic research with field application, addressing challenges such as landslide risk in open-pit mining and urban emergency planning. He is also engaged in educational research to strengthen curricula for training future professionals in emergency response. Through interdisciplinary collaboration and field-oriented solutions, his research significantly contributes to safer infrastructure, more resilient communities, and better-informed emergency strategies.

📊 Publication Top Notes:

🧱 Evolution of Pore Structure and Mechanical Characteristics of Red Sandstone Under Drying–Wetting Cycles — Authors: Deng H., Zhou S., Yu S., Liu Y., Xu J. | 📅 Year: 2025 | 📰 Minerals | 📈 Cited by: 0 🟢 researchgate.net+15mdpi.com+15mdpi.com+15

🏗️ Pore structure and mechanical characteristics of CRS mortar based on NMR and fractal theory — Authors: Jiang Z., Cai G., Liu Y., Wang P., Yu S. | 📅 Year: 2024 | 📰 Construction and Building Materials | 📈 Cited by: 4 🟢 researchgate.net+10colab.ws+10mdpi.com+10

Zhenyun Tang |Structural engineering |Best Research Article Award

Prof. Dr. Zhenyun Tang | Structuralengineering
|Best Research Article Award

 

Professor at BEIJING UNIVERSITY OF TECHNOLOGY ,China.

 

Professor Tang Zhenyun is a distinguished expert in earthquake engineering and disaster mitigation at Beijing University of Technology. As a doctoral supervisor, he contributes significantly to experimental seismic technology and structural vibration control. He serves on multiple national youth editorial and technical committees focused on disaster resilience. His innovative research spans real-time hybrid simulation, base isolation systems, and tuned liquid dampers. Tang has authored high-impact papers in top journals like International Journal of Structural Stability and Dynamics and Soil Dynamics and Earthquake Engineering. He has earned prestigious awards, including the Silver Medal at the Geneva International Exhibition of Inventions and the First Prize from the China Highway and Transportation Society. His scholarly excellence makes him a prime candidate for the Best Research Article Award.


🌍 Professional Profile:

Scopus

🏆 Suitability for the Best Research Article Award

 

Professor Tang Zhenyun is an internationally recognized scholar in earthquake engineering, whose research integrates experimental innovation and practical seismic mitigation strategies. His recent articles in high-impact journals such as Soil Dynamics and Earthquake Engineering and International Journal of Structural Stability and Dynamics reflect cutting-edge advancements in vibration control, base isolation, and real-time hybrid simulation. His award-winning work—recognized by the China Inspection and Testing Society, Geneva International Exhibition of Inventions, and others—demonstrates both theoretical depth and practical impact. As a doctoral supervisor and active member of key professional societies, Professor Tang’s research not only advances academic knowledge but also contributes to safer infrastructure. His scientific rigor and innovation make him highly suitable for the Best Research Article Award.

🎓 Education 

Professor Tang Zhenyun holds a Ph.D. in Engineering, specializing in structural dynamics and earthquake resilience. His doctoral research laid a solid foundation in advanced experimental methods, real-time hybrid simulation, and vibration control technologies for civil infrastructure. He has received comprehensive academic training from leading Chinese institutions, culminating in his doctoral degree, which has empowered him to contribute meaningfully to seismic safety and geotechnical innovation. Throughout his education, Professor Tang demonstrated exceptional academic merit and research capability, which propelled him into a prominent academic and professional trajectory. His educational background enables him to mentor graduate and doctoral students while advancing theoretical and applied research in structural and earthquake engineering.

🏢 Work Experience 

With extensive academic and research experience, Professor Tang Zhenyun serves as a full professor and doctoral supervisor at Beijing University of Technology. He has led and collaborated on national research projects involving seismic mitigation, vibration control, and soil-structure interaction. Tang has developed innovative real-time hybrid simulation techniques and applied them to civil engineering challenges, producing highly cited publications. His engineering expertise is recognized nationally and internationally, and he has played key roles on editorial boards and professional committees in earthquake prevention and disaster resilience. He also bridges academia and industry through applied research, contributing to testing standards and resilient infrastructure development. His multifaceted experience underscores his suitability for awards recognizing impactful and applied research in structural safety.

🏅 Awards and Honors 

Professor Tang Zhenyun has received numerous national and international honors recognizing his contributions to seismic engineering. These include the First Prize from the China Inspection and Testing Society (1/15) and the Second Prize from the Fujian Science and Technology Awards (2/7). He won the Silver Medal at the Geneva International Exhibition of Inventions (1/5) for his innovative engineering solutions. As the sole recipient (1/1) of the Personal Prize from the China Industry-University-Research Institute Collaboration Association, Tang demonstrated exceptional leadership in applied research. He also contributed to the First Prize from the China Highway and Transportation Society (11/15). These accolades collectively reflect his groundbreaking research, interdisciplinary collaborations, and impactful innovations in earthquake resilience and structural safety.

🔬 Research Focus 

Professor Tang Zhenyun’s research is centered on earthquake engineering, with specific expertise in experimental technology, base isolation, seismic mitigation, and vibration control. He specializes in real-time hybrid simulation, where he develops and applies novel methods to model complex soil-structure systems under seismic loads. His studies have advanced the use of GPU computing for structural simulations and proposed new frequency-domain analysis techniques for systems employing tuned liquid dampers. Tang’s work on the stability of hybrid testing systems and parameter identification in dynamic models has influenced the development of resilient infrastructure. His research addresses both theoretical modeling and practical application, making significant contributions to safety-critical structures in earthquake-prone regions and aligning with national resilience strategies.

📊 Publication Top Notes:

  1. Yang, B., Li, Z., Lv, J., Tang, Z., & Wang, L. (2025). Experimental study on load-bearing capacity of T-shaped semi-rigid connected double skin composite shear walls. KSCE Journal of Civil Engineering.
    Citations: 1

  2. Shang, Q., Tang, Z., & Wang, T. (2024). Component-level seismic fragility database of suspended piping systems in buildings. Earthquake Engineering and Resilience.
    Citations: 0

  3. Li, X., Tang, Z., & Du, X.L. (2024). Identification of stable parameters for discrete-time rational approximation of MDOF frequency response functions in semi-infinite media. Gongcheng Lixue/Engineering Mechanics.
    Citations: 1

  4. Liu, H., Tang, Z., & Enokida, R. (2024). Stability prediction method of time-varying real-time hybrid testing system on vehicle-bridge coupled system. Mechanical Systems and Signal Processing.
    Citations: 1

  5. Tang, Z., Li, J., Wang, M., Yu, C., & Li, Z. (2024). Investigation on bearing resistance of thin-walled circular steel tube subjected to eccentric loading. Advances in Structural Engineering.
    Citations: 0

  6. Yi, S., Su, T., & Tang, Z. (2024). Robust adaptive Kalman filter for structural performance assessment. International Journal of Robust and Nonlinear Control.
    Citations: 4

  7. Wu, Y., Dong, X., Liao, W., Zheng, G., & Shang, H. (2024). Field dynamic characteristics testing of foundation isolation structures under horizontal initial displacement. Zhendong Gongcheng Xuebao/Journal of Vibration Engineering.
    Citations: 1

  8. Liu, H., & Tang, Z. (2024). Stability prediction method for real-time hybrid test system based on the measured dynamics of physical test system. Soil Dynamics and Earthquake Engineering.
    Citations: 0

  9. Tang, Z., & Li, X. (2023). Stable parameters identification for rational approximation of single degree of freedom frequency response function of semi-infinite medium. International Journal for Numerical Methods in Engineering.
    Citations: 0

Mehmet Senturk |Structural Engineering | Best Researcher Award

Dr. Mehmet Senturk | Structural Engineering
| Best Researcher Award

 

Tutor in Engineering at Coventry University, United Kingdom .

Dr. Mehmet Senturk is a distinguished engineering tutor at Coventry University, with a PhD in Structural Engineering. His work integrates seismic design, finite element analysis, and sustainable construction, bridging academic innovation with industrial application. With over ten years of global academic and consultancy experience, Dr. Senturk has led and collaborated on funded research projects, produced high-impact publications, and holds several national patents. His expertise spans structural health monitoring, sensor technologies, image processing, and additive manufacturing. His interdisciplinary approach enhances structural resilience and digital engineering. With 140 citations and an h-index of 6, Dr. Senturk’s commitment to cutting-edge innovation and international collaboration makes him an ideal candidate for the Best Researcher Award.

🌍 Professional Profile:

Orcid 

Scopus

Google scholar

🏆 Suitability for the Best Researcher Award

Dr. Mehmet Senturk exemplifies research excellence through his impactful contributions to structural and earthquake engineering. With a PhD in Structural Engineering and over a decade of academic and industry experience, he has led pioneering work in seismic design, sustainable structures, and smart monitoring technologies. His three national patents, 140+ Google Scholar citations, and extensive publication record in top-tier journals showcase his innovative approach and commitment to advancing engineering science. Dr. Senturk’s interdisciplinary skills—spanning robotics, image processing, and additive manufacturing—have fueled international collaborations and transformative research projects. His ability to bridge theory with real-world applications makes him a leader in engineering innovation and a highly deserving candidate for the Best Researcher Award.

🎓 Education 

Dr. Mehmet Senturk’s academic journey reflects a strong foundation in civil and structural engineering. He holds a PhD in Structural Engineering, where his research focused on advanced modeling and resilience of structural systems under seismic and thermal loads. His MSc in Earthquake Engineering provided expertise in seismic risk mitigation, retrofitting, and dynamic analysis. He began his academic pursuit with a BSc in Civil Engineering, establishing core competencies in materials science, construction practices, and geotechnical fundamentals. This progression has allowed Dr. Senturk to integrate theory with real-world applications, culminating in a comprehensive educational background ideal for interdisciplinary research and innovation in structural and sustainable engineering.

🏢 Work Experience 

Dr. Mehmet Senturk has over a decade of combined academic and industrial experience. He currently serves as a Tutor in Engineering at Coventry University, where he mentors future engineers and contributes to pioneering research. His career includes contributions to over 20 industry projects, with a focus on structural diagnostics, seismic assessment, and smart infrastructure systems. Dr. Senturk has collaborated with institutions such as the University of Sheffield, Istanbul Technical University, and Istanbul Rumeli University. His cross-functional work includes the design and testing of cold-formed steel, bolted precast systems, and high-temperature-resistant components. His experience spans robotics, sensor integration, and image processing, positioning him at the intersection of civil, digital, and structural engineering.

🏅 Awards and Honors 

Dr. Mehmet Senturk’s research achievements have earned national recognition through multiple Turkish patents, reflecting his contributions to innovative structural systems and testing technologies. His patented inventions include a two-piece high-temperature test furnace and advanced connection systems for reinforced concrete. He has been a prolific reviewer for leading journals such as Engineering Structures and Structures (Elsevier), completing over 30 peer-reviews. His role in collaborative projects with renowned academics from institutions like the University of Sheffield and Istanbul Technical University highlights his influence in global research. With 140 Google Scholar citations and an h-index of 6, Dr. Senturk’s consistent excellence in research, collaboration, and innovation underlines his strong suitability for awards recognizing outstanding research contributions.

🔬 Research Focus 

Dr. Mehmet Senturk’s research focuses on enhancing structural resilience through the integration of traditional civil engineering with advanced digital tools. His core areas include seismic performance of structures, finite element modeling, and sustainable construction. He investigates structural systems under complex load conditions—thermal, seismic, and axial—using both experimental and numerical methods. His research incorporates sensor technologies, structural health monitoring, and robotics platforms like Arduino and Raspberry Pi for real-time diagnostics. He is also active in additive manufacturing and digital prototyping of test systems. Dr. Senturk’s work supports the development of smarter, safer infrastructure through interdisciplinary innovation, evidenced by his patents, publications in top-tier journals, and ongoing collaborations across Europe and Turkey.

📊 Publication Top Notes:

  1. Senturk, M., Ilki, A., & Hajirasouliha, I. (2025).
    Replaceable monolithic-like beam-to-beam precast connection for RC frames: Concept development and design procedure.
    Structures.
    https://doi.org/10.1016/j.istruc.2025.108875

  2. Öztürk, F., Mojtabaei, S. M., Senturk, M., Pul, S., & Hajirasouliha, I. (2022).
    Buckling behaviour of cold-formed steel sigma and lipped channel beam–column members.
    Thin-Walled Structures, 173, 108963.
    https://doi.org/10.1016/j.tws.2022.108963

  3. Pul, S., Senturk, M., Ilki, A., & Hajirasouliha, I. (2021).
    Experimental and numerical investigation of a proposed monolithic-like precast concrete column-foundation connection.
    Engineering Structures, 239, 113090.
    https://doi.org/10.1016/j.engstruct.2021.113090

  4. Pul, S., Atasoy, A., Senturk, M., & Hajirasouliha, I. (2021).
    Structural performance of reinforced concrete columns subjected to high-temperature and axial loading under different heating-cooling scenarios.
    Journal of Building Engineering, 43, 102477.
    https://doi.org/10.1016/j.jobe.2021.102477

  5. Senturk, M., Pul, S., Ilki, A., & Hajirasouliha, I. (2020).
    Development of a monolithic-like precast beam-column moment connection: Experimental and analytical investigation.
    Engineering Structures, 206, 110057.
    https://doi.org/10.1016/j.engstruct.2019.110057

  6. Pul, S., & Senturk, M. (2017).
    A bolted moment connection model for precast column-beam joint.
    World Congress on Civil, Structural, and Environmental Engineering.
    https://doi.org/10.11159/icsenm17.129