Lili Wang | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Lili Wang | Materials Science
| Best Researcher Award

Assoc. Prof. Dr. Lili Wang | Zhejiang Sci-Tech University | China

Assoc. Prof. Dr. Lili Wang is an Associate Professor at Zhejiang Sci-Tech University, specializing in textile chemistry and dyeing & finishing engineering. She earned her Ph.D. from Donghua University, where she laid the foundation for her pioneering work in eco-friendly dyeing technologies. With over 50 SCI-indexed papers, 720 citations, and 15 granted patents, Dr. Wang has established herself as a leading researcher in sustainable textile innovation. Her projects, including digital spray dyeing for polyester fabrics, highlight her commitment to energy conservation and carbon reduction. A Senior Member of the China Textile Engineering Society, she has advanced the green and digital transformation of the textile industry, promoting multifunctional textiles and polymer modification technologies for sustainable industrial development.

Professional Profile 

Scopus

ORCID

Suitability for the Best Researcher Award

Assoc. Prof. Dr. Lili Wang is a highly deserving candidate for the Best Researcher Award, with exceptional contributions to textile chemistry and sustainable dyeing technologies. Her research on disperse dye digital spray dyeing directly addresses global challenges of energy consumption and carbon emissions, advancing green manufacturing. With 50 SCI publications, 720 citations, and 15 patents, she demonstrates both academic excellence and innovation. Her consultancy projects, including eco-friendly dispersed dye development, show direct industrial impact and knowledge transfer. As a Senior Member of the China Textile Engineering Society, Dr. Wang contributes to academic leadership and collaboration. Her work not only advances scientific understanding but also provides practical solutions for sustainable textile production, making her a role model in research excellence.

Education 

Assoc. Prof. Dr. Lili Wang received her doctoral degree in Textile Chemistry and Dyeing & Finishing Engineering from Donghua University, one of China’s top institutions in textile research and innovation. Her doctoral studies focused on advanced dyeing techniques, material modification, and sustainable approaches to textile finishing, providing her with a strong foundation in both theoretical and applied research. Prior to her doctoral studies, she pursued rigorous academic training in chemistry and textile engineering, which shaped her multidisciplinary expertise. Her education combined deep scientific inquiry with industrial application, preparing her to bridge the gap between laboratory research and large-scale textile production. This academic background has enabled her to lead pioneering research in digital dyeing technologies and multifunctional textile innovation.

Work Experience 

Assoc. Prof. Dr. Lili Wang currently serves as an Associate Professor at Zhejiang Sci-Tech University, where she leads research on textile printing, dyeing, and sustainable material innovation. She has spearheaded major research projects, including the study of disperse dye digital spray dyeing for polyester fabrics, focusing on energy conservation and carbon reduction. In collaboration with industry, she has developed eco-friendly dyeing technologies that improve efficiency while reducing environmental impact. Dr. Wang has published 50 SCI papers, secured 15 invention patents, and guided industry-oriented projects that support the transformation of the textile sector. With extensive teaching, mentoring, and research experience, she actively contributes to both academic development and industrial innovation, reinforcing her position as a key figure in textile sustainability research.

Awards and Honors

Assoc. Prof. Dr. Lili Wang career is distinguished by significant academic and research achievements, earning recognition at both national and international levels. With 15 granted invention patents and over 50 SCI publications, she has consistently demonstrated innovation and excellence. Her research outputs, widely cited with a citation index of 720, highlight her influence in advancing sustainable textile technologies. She has received acknowledgment from industry partners for her consultancy projects on eco-friendly dyeing methods, reflecting her role in bridging academia and application. As a Senior Member of the China Textile Engineering Society, she has been recognized for her contributions to textile science. Her pioneering work in digital spray dyeing and green textile transformation has positioned her as a leader in sustainable textile engineering.

Research Focus 

Assoc. Prof. Dr. Lili Wang research is centered on advancing eco-friendly, digital, and multifunctional textile technologies. Her primary focus is on new methods of textile printing and dyeing that reduce energy consumption, minimize carbon emissions, and promote green transformation within the industry. She has conducted pioneering work on disperse dye digital spray dyeing for polyester fabrics, integrating sustainability with high-performance outcomes. In addition, her research explores the modification and functionalization of natural polymer polysaccharides, enabling the creation of textiles with enhanced properties such as durability, comfort, and multifunctionality. By combining advanced chemistry, engineering, and digital innovation, Dr. Wang’s research contributes directly to the global demand for sustainable materials, aligning with industry needs for eco-conscious and technologically advanced textile solutions.

Publication Top Notes

Natural alcohol-modified polyacrylate with durable anti-adhesion and synergistic antibacterial functions for eco-textiles
Year: 2025

Preparation and properties of end-group cross-linked organosilicon modified waterborne polyurethane for digital inkjet dyeing of polyester without washing
Year: 2025

Silicone-modified waterborne polyurethane for wash-free digital inkjet dyeing of polyester fabric with high surface colour and fastness
Year: 2025

A novel quaternary ammonium triethanolamine modified polyester polyether for rapid wetting and penetration pretreatment for digital inkjet dyeing of polyester fabric
Year: 2025 | Cited by: 6

Ultra-high elongation MXene/polyurethane porous fibers with passive insulation, passive radiative heating and active heating properties for personal thermal management
Year: 2024 | Cited by: 7

Organofluorosilicon Modified Polyacrylate with the Unidirectional Migration Promotion of Disperse Dyes toward Polyester Fabric for Wash-Free Digital Inkjet Dyeing
Year: 2024 | Cited by: 6

Conclusion

Assoc. Prof. Dr. Lili Wang demonstrates exceptional merit for the Best Researcher Award through her strong academic background, innovative research, and practical industry impact. Her work in advancing eco-friendly and multifunctional textile technologies has positioned her as a leader in sustainable textile innovation. With her impressive record of SCI publications, citations, and patents, she has contributed both scientifically and technologically to her field. While areas such as international collaboration and academic leadership could be further expanded, her existing achievements make her an excellent candidate for recognition. Dr. Wang embodies the qualities of a best researcher—innovation, impact, and commitment to sustainability.

Le-Xi Zhang | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Le-Xi Zhang | Materials Science
| Best Researcher Award

University teacher at Tianjin University of Technology, China

Dr. Le-Xi Zhang is an esteemed scientist specializing in gas and humidity sensing materials, heterogeneous catalysts, and oxide nanostructures. Born on March 18, 1982, in China, he is currently an Associate Professor at Tianjin University of Technology. With a Ph.D. in Material Science from the Institute of Coal Chemistry, Chinese Academy of Sciences, he has made significant contributions to nanomaterials and functional complexes, including MOFs. Dr. Zhang has successfully led multiple national and provincial research projects and has served as a reviewer for over 45 SCI journals. His work has been widely recognized in high-impact journals, and he holds memberships in esteemed scientific societies, including the Chinese Chemical Society.

🌍 Professional Profile:

Orcid

🏆 Suitability for the Best Researcher Award 

Dr. Le-Xi Zhang’s distinguished contributions to materials science, particularly in gas sensing and oxide nanostructures, make him a strong candidate for prestigious awards. His pioneering research in perovskites and MOFs has advanced sensing technology and heterogeneous catalysis, impacting industrial and environmental applications. As the principal investigator for several high-profile national and provincial research projects, his leadership in academia is commendable. Additionally, his extensive publication record, with numerous first/corresponding author papers in high-impact journals, reflects his influence in the scientific community. His role as a reviewer for 45+ SCI journals and editorial board memberships further solidify his academic excellence. These achievements highlight his suitability for recognition in Best Researcher Award.
.

🎓 Education 

Dr. Le-Xi Zhang pursued his undergraduate studies at Qufu Normal University, earning a Bachelor of Science degree in Chemistry (2001-2005). His passion for materials science led him to the Institute of Coal Chemistry, Chinese Academy of Sciences, where he completed his Ph.D. in Material Science (2005-2012). During his doctoral studies, he gained expertise in nanomaterials, catalysis, and gas-sensing technologies. His research focused on advanced oxide nanostructures, functional materials, and their applications in sensing and energy storage. This strong academic foundation has enabled him to contribute significantly to scientific advancements in his field. His interdisciplinary education has played a crucial role in shaping his expertise and leadership in materials science research.

🏢 Work Experience 

Dr. Le-Xi Zhang has been a dedicated educator and researcher at Tianjin University of Technology since 2012. He started as a Lecturer (2012-2018) before being promoted to Associate Professor (2018-present). Over the years, he has supervised research projects focused on gas sensors, perovskite materials, and MOFs. His contributions extend beyond research, as he actively mentors students and collaborates with global research institutions. Additionally, he is a reviewer for over 45 SCI journals and serves on the editorial boards of Rare Metals and Tungsten. His professional affiliations, including membership in the Chinese Chemical Society, further reflect his active engagement in the scientific community. His experience underscores his expertise in materials science and academia.

🏅 Awards and Honors 

Dr. Le-Xi Zhang has received multiple honors for his outstanding contributions to materials science. He was recognized as one of the Leading Innovative Talents under the “Longcheng Talent Plan” in Changzhou, Jiangsu Province, for his work on high-strength ZnO-PSF composite nanofiltration membranes. He also secured funding through the prestigious Tianjin 131 Innovative Talent Training Project (Third Level), which supported his research on oxide hierarchical structures. His research projects have been funded by esteemed institutions, including the National Natural Science Foundation of China and the Tianjin Natural Science Council. With a strong track record of impactful research, his numerous accolades highlight his excellence in material chemistry and sensor technology innovation.

🔬 Research Focus 

Dr. Le-Xi Zhang’s research centers on gas and humidity sensing materials, heterogeneous catalysts, and oxide nanostructures, including perovskites. He also explores functional complexes such as MOFs, with applications in energy storage, catalysis, and environmental monitoring. His work emphasizes designing novel nanostructured materials with enhanced sensing performance, focusing on defect engineering and hierarchical structures. He has led multiple research projects, investigating carbon dot-doped metal oxides and ZnO@MOF photocatalysis. His innovative approaches to gas-sensing materials have led to advancements in sensor sensitivity, selectivity, and stability. By integrating nanotechnology with material science, his research continues to contribute to the development of next-generation sensing devices for industrial and healthcare applications.

📊 Publication Top Notes:

  • Guo, C.-C., Wang, C.-J., Zhang, L.-X., Qiu, Q.-D., Zhu, M.-Y., Yin, J., & Bie, L.-J. (2024). Halide-dependent humidity sensing of Cs₂SnX₆ (X = Cl, Br, I) perovskites for real-time human physiological moisture detection. Journal of Materials Chemistry C.

  • Zhu, S.-G., Cui, Y., Zhang, L.-X., Shao, H., Yin, J., & Bie, L.-J. (2024). Cation-oxygen dual-defective ACu₃Ti₄O₁₂ (A = Sr, Ba) perovskites enable high-performance humidity sensors for human-body-related moisture monitoring. Ceramics International.

  • Huo, Z.-L., Qiao, J.-Y., Zhang, L.-X., Yue, Y.-W., Qiu, Q.-D., Hou, Z.-J., Yin, J., & Bie, L.-J. (2024). High-performance flexible humidity sensors based on MCl (M = Li, Na, K) doped PVP/PVDF self-supporting films for boosted real-time noncontact moisture monitoring. ACS Applied Polymer Materials.

  • Yin, Y.-Y., Zhang, L.-X., An, X.-Y., Wang, C.-J., Zhang, Q.-Q., & Bie, L.-J. (2023). Lead-free defective halide perovskites Cs₂SnX₆ (X = Cl, Br, I) for highly robust formaldehyde sensing at room temperature. Scripta Materialia. https://doi.org/10.1016/j.scriptamat.2023.115541

  • Liu, Y.-F., Li, C.-T., Zhang, L.-X., Chong, M.-X., & Bie, L.-J. (2023). An all-inorganic lead-free halide perovskite Cs₂InCl₅(H₂O) with heterogeneous oxygen for noncontact finger humidity detection. Scripta Materialia. /j.scriptamat.2023.115338

  • Dong, H., Zhang, L.-X., Xu, H., Yin, Y.-Y., Zhao, X.-B., & Bie, L.-J. (2023). H-bonding interactions enable a 3D pillared cobalt(II) coordination polymer for touchless finger moisture detection. Tungsten.