Harun Gokce | Mechanical | Best Mechanical Engineering Award

Assoc. Prof. Dr. Harun Gokce | Mechanical
| Best Mechanical Engineering Award

Gazi University | Turkey

Assoc. Prof. Dr. Harun Gokce Research activities focus on advanced structural and mechanical system design, optimization, and virtual manufacturing, integrating computer-aided engineering, experimental mechanics, and intelligent simulation techniques. Work emphasizes the development of 3D simulation environments for CNC machine tools, virtual machining, and automated process optimization to improve manufacturing accuracy, efficiency, and cost performance. Significant contributions have been made to additive manufacturing, including the design of bio-inspired microstructures and bone scaffolds, enabling improved biomechanical performance in tissue engineering applications. Research also addresses multi-objective optimization of mechanical components such as gearboxes, spur gears, hydrostatic thrust bearings, and diffusers through advanced algorithms including Taguchi methods and grey wolf optimization. Additional studies involve the numerical and experimental investigation of cutting forces, thermal behavior, and tool geometries in high-precision machining processes, contributing to enhanced surface quality and tool life. Expertise in CAD/CAE platforms supports integrated modeling, analysis, and validation of complex assemblies for aerospace, automotive, and defense applications, including guided systems, aerodynamic components, and structural platforms. By combining simulation, reverse engineering, rapid prototyping, and optimization methodologies, this body of work advances smart manufacturing, lightweight design, and digitally driven engineering solutions for high-performance and mission-critical systems.

 Profile: Google Scholar

Featured Publications

Top, N., Şahin, İ., & Gökçe, H. (2021). Computer-aided design and additive manufacturing of bone scaffolds for tissue engineering: State of the art. Journal of Materials Research, 36(1), 3725–3745.

Dörterler, M., Şahin, İ., & Gökçe, H. (2018). A grey wolf optimizer approach for optimal weight design problem of the spur gear. Engineering Optimization, 51(1), 1–15.

Yavuz, M., Gökçe, H., Çiftci, I., Yavaş, C., & Şeker, U. (2020). Investigation of the effects of drill geometry on drilling performance and hole quality. International Journal of Advanced Manufacturing Technology, 106(1), 4623–4633.

Top, N., Şahin, İ., & Gökçe, H. (2023). The mechanical properties of functionally graded lattice structures derived using computer-aided design for additive manufacturing. Applied Sciences, 13(21), 1–21

Sarra Senouci | Mechanical Engineering | Editorial Board Member

Mrs. Sarra Senouci | Mechanical Engineering
| Editorial Board Member

University of Electronic Science and Technology of China | Algeria

Mrs. Sarra Senouci the research work centers on advanced cryptographic systems, network security, and intelligent detection frameworks, with a strong emphasis on chaotic dynamics, pseudo-random number generation, and secure data transmission. The studies include the development of a novel pseudo-random number generator (PRNG) for fiber optic communication, leveraging nonlinear chaotic behavior to enhance cryptographic strength and improve resistance to prediction attacks. Additional contributions explore a chaotic-based cryptographically secure PRNG designed for high-performance applications requiring strong randomness and low computational overhead. In the domain of cybersecurity, the research introduces deep convolutional neural network architectures for high-precision and real-time DDoS attack detection within software-defined networking environments. This includes models optimized for both feature extraction and rapid classification to mitigate large-scale network threats. Further advancements incorporate feature engineering and ensemble learning techniques to achieve robust, scalable, and resilient DDoS detection frameworks capable of adapting to evolving attack patterns. Earlier academic work includes the design and construction of autonomous sensor networks and the implementation of chaotic systems on FPGA platforms, highlighting strong integration of hardware, communication technologies, and nonlinear system modeling across multiple layers of modern electronic and communication systems.

 Profile:  Google Scholar 

Featured Publications

Senouci, S., Madoune, S. A., Senouci, M. R., Senouci, A., & Tang, Z. (2025). A novel PRNG for fiber optic transmission. Chaos, Solitons & Fractals, 192, 116038. https://doi.org/10.1016/j.chaos.2025.116038

Madoune, S. A., Senouci, S., Dingde, J., & Senouci, A. (2024). Deep convolutional neural network-based high-precision and speed DDOS detection in SDN environments. 2024 21st International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 1–6. https://doi.org/10.1109/iccwamtip64812.2024.10873789

Madoune, S. A., Senouci, S., Setitra, M. A., & Dingde, J. (2024). Toward robust DDOS detection in SDN: Leveraging feature engineering and ensemble learning. 2024 21st International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 1–7. https://doi.org/10.1109/iccwamtip64812.2024.10873648

Wei Xu | Mechanical Engineering | Best Researcher Award

Dr. Wei Xu | Mechanical Engineering
| Best Researcher Award

Dr. Wei Xu | China North Artificial Intelligence & Innovation Research Institute | China

Dr. Wei Xu is a Research Professor at the China North Artificial Intelligence & Innovation Research Institute, specializing in legged robotics and bio-inspired systems. With a Ph.D. in Mechanical Electronics Engineering, he has established himself as a leading expert in advanced robotic design and control. His research focuses on developing high-mobility robotic platforms that combine innovative mechanical systems with sophisticated control algorithms, enabling efficient navigation in complex and unstructured environments. Xu Wei has significantly contributed to advancing robotics through pioneering work on gait planning, system integration, and intelligent locomotion. His extensive publications, patents, and leadership in collaborative projects highlight his influence in shaping robotics innovation, making him a strong candidate for the Best Researcher Award.

Professional Profile 

Scopus

Suitability for the Best Researcher Award

Dr. Wei Xu demonstrates exceptional suitability for the Best Researcher Award through his innovative contributions to legged robotics, bio-inspired systems, and intelligent locomotion control. His work bridges theoretical advances with practical applications, enabling robotic systems to navigate challenging environments with precision and reliability. Xu Wei’s leadership in national-level research initiatives, prolific publication record, and extensive intellectual property portfolio reflect his scientific excellence and ability to drive innovation. His active collaboration with prestigious institutions further underscores his status as a respected thought leader in robotics. He embodies the qualities sought in a Best Researcher Award recipient: innovation, impact, leadership, and a vision for advancing technology to solve real-world challenges.

Education 

Dr. Wei Xu holds a Ph.D. in Mechanical Electronics Engineering, with a strong academic foundation in robotics, automation, and control systems. His education emphasized a deep understanding of mechatronic system design, advanced control strategies, and bio-inspired engineering principles, laying the groundwork for his pioneering contributions to robotics. Throughout his studies, he developed expertise in dynamic locomotion, system modeling, and the integration of intelligent algorithms for robotic platforms. His academic training combined theoretical knowledge with extensive practical research, equipping him to tackle complex engineering challenges. This rigorous background has enabled him to excel as a research leader, focusing on innovative robotic systems that bridge cutting-edge mechanical design and artificial intelligence-driven control, shaping the future of intelligent machines and autonomous mobility solutions.

Work Experience 

Dr. Wei Xu has extensive experience in robotics research, leading high-level projects and contributing to groundbreaking advancements in bio-inspired robotic systems. As a Research Professor, he has successfully guided research teams, coordinated interdisciplinary collaborations, and overseen the development of innovative robotic technologies. His work emphasizes dynamic locomotion, adaptive control, and advanced system integration, contributing to practical applications in exploration, logistics, and rescue operations. Xu Wei has played a central role in major research programs, driving innovation through project leadership and strategic technical expertise. His experience extends to organizing international conferences, fostering knowledge exchange, and promoting collaboration among leading institutions. His contributions to robotics research and development demonstrate a rare combination of academic excellence, technical leadership, and visionary problem-solving.

Awards and Honors

Dr. Wei Xu academic excellence and innovative contributions have been recognized through leadership roles, patents, and impactful publications. He has been entrusted with key responsibilities in high-level research programs, reflecting his expertise and reputation in robotics research. His role as Workshop Session Chair at an esteemed international robotics conference highlights his influence in the field and ability to advance scholarly discourse. Xu Wei’s patented innovations and published works demonstrate sustained excellence and creativity, earning him recognition among peers. His involvement in leading interdisciplinary collaborations with top institutions underscores his status as a trusted expert in robotics innovation. These achievements collectively illustrate his leadership, dedication, and outstanding research contributions, making him a distinguished figure deserving of professional accolades.

Research Focus 

Dr. Wei Xu research centers on legged robotics, bio-inspired locomotion, and intelligent control systems. He explores innovative mechanical designs combined with advanced nonlinear control strategies to achieve robust robotic mobility in unstructured and challenging terrains. His work emphasizes adaptive gait planning, energy-efficient movement, and integrated systems that enhance autonomy and versatility in robotic platforms. Xu Wei is dedicated to bridging theoretical research with real-world application, focusing on developing high-performance robots capable of exploration, disaster response, and autonomous navigation. His research integrates engineering principles, artificial intelligence, and biomimicry, pushing the boundaries of mobility and system intelligence. This interdisciplinary approach has made him a leader in advancing robotics innovation, influencing both academic research and practical technology deployment.

Publication Top Notes

  • Wheeled-legged robots for multi-terrain locomotion in plateau environments
    Year: 2025

  • Optimization of the Four-Link Transmission Mechanism of the Knee Joint of a Quadruped Robot Based on the Strut Structure
    Year: 2025

Conclusion

Xu Wei is a visionary researcher whose pioneering work in legged robotics and bio-inspired locomotion demonstrates scientific depth and practical impact. His leadership in national projects, numerous patents, and strong academic track record make him highly deserving of the Best Researcher Award. With focused efforts on increasing international visibility and strengthening industry collaborations, he has the potential to become a globally renowned authority in robotics and intelligent systems. His exceptional research contributions, innovative solutions, and dedication to advancing the field firmly position him as an outstanding candidate for this recognition.