Qihui Yu | Renewable Energy | Best Researcher Award

Mr. Qihui Yu | Renewable Energy | Best Researcher Award

Department Head at Inner Mongolia University of Science & Technology  |  China

Dr. Qihui Yu is an accomplished associate professor at Inner Mongolia University of Science and Technology, with a Ph.D. in Mechatronic Engineering from Beihang University. Specializing in compressed air energy storage and energy-efficient pneumatic systems, he brings over a decade of academic and postdoctoral research expertise. His innovative work integrates thermal and fluid power systems to address energy efficiency challenges. He has served as a visiting scholar at the University of Nottingham, strengthening international collaboration. Dr. Yu has led a National Natural Science Foundation of China (NSFC) project, showcasing his leadership in high-impact research. His technical excellence and commitment to sustainable energy systems make him highly suitable for the Best Researcher Award, recognizing innovation, dedication, and significant contributions to his field.

Professional Profile 

Scopus

Suitability for the Best Researcher Award

Dr. Qihui Yu is highly suitable for the Best Researcher Award due to his significant contributions to the fields of compressed air energy storage, pneumatic system optimization, and thermal energy management. With a Ph.D. from Beihang University and postdoctoral experience in automation and fluid power systems, he has led impactful research at Inner Mongolia University of Science and Technology. His leadership in a National Natural Science Foundation of China project demonstrates national recognition and technical excellence. Dr. Yu’s international academic collaboration as a visiting scholar at the University of Nottingham, coupled with a strong publication record, underscores his innovative work and global research relevance. His work aligns with sustainable energy goals, making him a deserving candidate for this prestigious award.

Education 

Dr. Qihui Yu pursued his academic journey in mechanical and mechatronic engineering across top Chinese institutions. He earned his Ph.D. in Mechatronic Engineering (Fluid Power Drive and Control) from Beihang University (BUAA) between 2010 and 2015, where he focused on advanced energy systems. Prior to that, he completed his master’s degree in Mechanical Electronic Engineering at Zhengzhou University (2007–2010). His undergraduate education in Mechanical Engineering and Automation was obtained from Henan University of Science and Technology (2003–2007). Throughout his education, Dr. Yu developed a strong foundation in fluid dynamics, automation, and thermal energy, laying the groundwork for his future contributions to energy-saving pneumatic and heat storage systems.

Work Experience 

Dr. Qihui Yu is currently an associate professor at Inner Mongolia University of Science and Technology, a position he has held since 2018, following his earlier role as a lecturer (2016–2018). He also spent a year (2021–2022) as a visiting scholar at the University of Nottingham, UK, enhancing his international research exposure. From 2014 to 2016, he served as a postdoctoral fellow at Beihang University’s School of Automation Science and Electrical Engineering. His diverse roles in academia, research, and international collaboration reflect a career dedicated to the advancement of energy storage and fluid power technologies. His trajectory highlights both technical leadership and consistent growth in academic responsibility and recognition.

Awards and Honors

Dr. Qihui Yu has earned recognition for his contributions to energy systems and engineering innovation. While specific award titles are not listed, his selection as a project leader for the National Natural Science Foundation of China (NSFC) underscores his standing in the academic and engineering research community. His appointment as a visiting scholar at the University of Nottingham further signifies his scholarly impact and collaborative value. His progressive academic promotions—from lecturer to associate professor—also reflect institutional acknowledgment of his research performance and teaching excellence. Dr. Yu’s track record and leadership in high-value research initiatives affirm his eligibility for esteemed awards such as the Best Researcher Award, celebrating sustained achievement and future promise.

 Research Focus 

Dr. Qihui Yu’s research is centered on compressed air energy storage (CAES), pneumatic energy-saving systems, and heat storage technology. He explores the thermodynamic behavior of gas-liquid interactions and energy optimization under variable spatial constraints. As principal investigator of a NSFC project (52465008), he investigates quasi-isothermal CAES processes to improve system efficiency. His work bridges theory and application, enhancing the performance and sustainability of modern energy storage solutions. With a strong focus on renewable and efficient energy systems, Dr. Yu contributes to national strategies for green technology development. His research has broad implications for industries seeking low-carbon solutions and positions him as a key innovator in mechanical and energy engineering.

 Publication Top Notes

Water spray heat transfer gas compression for compressed air energy system,

Year: 2021

Compressed air energy storage capacity configuration and economic evaluation considering the uncertainty of wind energy

Year: 2022

Experimental and performance study of spray heat transfer‑based compressed air quasi‑isothermal expansion system

Year: 2023

Performance analysis of an innovative kind of two‑stage piston type expansion air engine

Year: 2018

Comparative study on air distribution system for piston‑type compressed air engine

Year: 2017

Fuzzy logic speed control for the engine of an air‑powered vehicle

Year: 2016

Optimization study on a single‑cylinder compressed air engine

Year: 2015

A review of compressed‑air energy storage

Year: 2019

Citations: 6

Conclusion

Dr. Qihui Yu is a highly competent and dedicated researcher in the field of energy-efficient pneumatic systems and compressed air energy storage. His record of managing national research projects, his innovative focus on gas-liquid heat and mass transfer, and his evolving academic trajectory support his candidacy for the Best Researcher Award. His contribution addresses pressing global challenges in sustainable energy and mechanical efficiency, making him a valuable contributor to engineering research. With further expansion of his international collaborations, higher-impact publications, and broader dissemination of his work, Dr. Yu is well-positioned to grow into a leading voice in his field. He is a worthy nominee whose potential for continued research excellence is both clear and promising.

Yongsheng Tian |Energy Resources | Best Researcher Award

Dr.YongshengTian |EnergyResources| Best Researcher Award

Lecturer at Shandong Jianzhu University, China

Dr. Yongsheng Tian is a Lecturer at Shandong Jianzhu University, China. His research interests include [specify key research areas if known]. He has published several research papers in reputed journals and has contributed to advancements in [mention specific fields if available]. Dr. Tian is actively involved in academic teaching and research, focusing on [relevant subjects].

Publication Profile

Scopus

Orcid

Education :

Dr. Yongsheng Tian holds a Doctor of Engineering degree with expertise in Energy and Power Engineering. As a master tutor, he has guided students in advanced research on thermal energy and heat transfer technologies.

Experience :

Dr. Tian serves as a Lecturer at Shandong Jianzhu University, specializing in thermal engineering. With over a decade of experience in academia and research, he has actively contributed to the field of heat transfer and energy storage. His extensive work includes leading multiple research projects and collaborating with industry professionals on thermal management solutions.

Research Focus :

Dr. Tian has developed a Battery Thermal Management System (BTMS) for heat preservation in low-temperature environments. The system leverages phase change materials and heat pipes for passive thermal management, significantly reducing the cooling rate of batteries in cold conditions. His research demonstrated that this solution extends battery cooling time by over 32.3%, thereby reducing the need for battery preheating. His contributions are crucial in improving energy efficiency and thermal stability in battery systems.

Skills:

Heat Transfer Enhancement and Flow Drag ReductionPhase Conversion Heat and Two-Phase FlowComputational Fluid Dynamics (CFD) Numerical Research and ApplicationHeat and Mass TransferThermal Management of Energy Storage BatteriesResearch Project ManagementScientific Writing and Journal Publications.

 

Publication :

  • Zhu, X., Zhou, S., Wang, C., Xiao, Q., Ma, F., & Tian, Y. (2024). Experimental Study on Battery Thermal Management of CPCM Coupled with Micro-Grooves Flat Heat Pipe at Low Temperature. SSRN. DOI: 10.2139/ssrn.5068945.

  • Zhou, S., Liu, X., Tian, Y., Zhang, C., Li, F., & Jiang, G. (2024). Multi-Fault Diagnosis of District Heating System Based on PCA_BP Neural Network. Process Safety and Environmental Protection. DOI: 10.1016/j.psep.2024.03.101.

  • Yang, L., Gai, D., & Tian, Y. (2023). Effect of Operating Temperature on Reverse Solute Flux in Forward Osmosis by Incorporating the Surface Charge Density. Desalination and Water Treatment. DOI: 10.5004/dwt.2023.29495.

  • Yang, L., Zhang, Q., Tian, Y., Zhang, L., & Zhang, H. (2023). Naturally Osmotic Water Transport Across Nanopores in Relation to Pore Diameters of Forward Osmosis Membrane. Journal of Nanoparticle Research. DOI: 10.1007/s11051-023-05714-5.

 

Conclusion

Dr. Tian’s expertise, research output, and industrial applications make him a strong contender for the Best Researcher Award. His work has a significant scientific and practical impact, addressing key challenges in thermal management and energy efficiency. With continued efforts in large-scale projects, patents, and international collaborations, he has the potential to make even greater contributions to his field.