Saqib Qamar | Artificial Intelligence | Best Researcher Award

 Dr. Saqib Qamar |Artificial Intelligence
| Best Researcher Award

Assistant Professor at Sohar University, India.

Dr. Saqib Qamar is a dedicated Assistant Professor at Sohar University, Oman, specializing in computer science with expertise in medical image analysis and deep learning. With a Ph.D. from Huazhong University of Science and Technology, China, and postdoctoral research from Sweden’s top institutes—KTH and Umea University—he has demonstrated strong research capabilities through high-quality publications and international collaboration. His academic career spans teaching, curriculum development, and industry experience. Known for his work ethic, innovation, and research productivity, Dr. Qamar has a profound commitment to student success and scientific excellence. His scholarly contributions and interdisciplinary engagement make him a compelling candidate for the Best Researcher Award.

🌍 Professional Profile:

ORCID

Google Scholar

🏆 Suitability for the Best Researcher Award :

Dr. Saqib Qamar’s academic journey reflects consistent excellence and impactful contributions to computer science, particularly in medical image analysis using AI. With experience in global research environments and a record of peer-reviewed publications, he bridges theory with real-world applications. His Ph.D. work on 3D CNNs for brain MRI segmentation was both innovative and practically relevant. As a postdoctoral fellow at KTH and Umea University, he engaged in collaborative, cutting-edge research. He also actively mentors students and contributes to academic discourse. His awards, research leadership, and ongoing projects demonstrate a trajectory of influence, making him highly suitable for the Best Researcher Award.

🎓 Education :

Dr. Saqib Qamar earned his Ph.D. in Computer Science from Huazhong University of Science and Technology, China (2015–2019), with a dissertation focused on 3D CNN models for brain MRI segmentation. His doctoral research integrated deep learning with medical imaging and received the HUST Excellence Award. He completed his Master’s in Computer Science at Aligarh Muslim University, India (2010–2013), where he studied AI, programming, and software engineering, and was awarded a Merit Cum Means scholarship. His academic foundation was laid through a B.Sc. (Hons.) in Statistics from the same university (2007–2010), where he focused on probability, statistics, and linear algebra, graduating with First Division.

🏢 Work Experience :

Dr. Saqib Qamar is currently an Assistant Professor at Sohar University, Oman (2025–present), where he teaches and conducts research in AI and medical image computing. He was previously a postdoctoral fellow at KTH Royal Institute of Technology (2024–2025) and Umea University (2022–2024), Sweden, focusing on machine learning and deep learning applications. At Umea, he also taught deep learning courses. Earlier, he served as Assistant Professor at Madanapalle Institute of Technology and Science, India (2019–2021), where he taught programming and ML subjects. Prior to academia, he worked as a Database Developer at nServices, Delhi (2013–2015), specializing in Oracle-based data systems and programming.

🏅Awards and Honors

Dr. Saqib Qamar has been recognized for his academic performance and research excellence throughout his career. He received the HUST Excellence Award during his Ph.D. at Huazhong University of Science and Technology, acknowledging his exceptional work in medical image segmentation using deep learning. He was also awarded the Merit Cum Means Scholarship by the Government of India during his Master’s studies. His postdoctoral research in Sweden was supported through prestigious international fellowships, and he has contributed to multiple international projects. Additionally, he has received appreciation for teaching excellence and academic service in both India and Oman. His record of honors reflects his dedication to advancing AI and medical informatics research globally.

🔬 Research Focus :

Dr. Saqib Qamar’s research focuses on medical image analysis, deep learning, and 3D convolutional neural networks. His doctoral work centered on brain MRI segmentation, proposing efficient and parallelized CNN architectures. He has expanded his expertise during postdoctoral stints in Sweden, exploring advanced AI techniques in healthcare imaging, neural cell recognition, and explainable AI. His work integrates datasets from MRI and CT scans with machine learning algorithms to enhance diagnostic capabilities. He is also interested in real-time data processing, parallel computing, and interpretable AI models. With an aim to bridge clinical needs with computational innovation, Dr. Qamar’s research contributes significantly to the domains of health informatics and intelligent medical systems.

📊 Publication Top Notes:

📘 Techniques of data mining in healthcare: a review
🗓️ Year: 2015 | ✍️ P Ahmad, S Qamar, SQA Rizvi | 📖 International Journal of Computer Applications | 🔢 Cited by: 174 📊

🧠 A variant form of 3D-UNet for infant brain segmentation
🗓️ Year: 2020 | ✍️ S Qamar, H Jin, R Zheng, P Ahmad, M Usama | 📰 Future Generation Computer Systems | 🔢 Cited by: 132 🧬

🦴 CT-based automatic spine segmentation using patch-based deep learning
🗓️ Year: 2023 | ✍️ SF Qadri, H Lin, L Shen, M Ahmad, S Qadri, S Khan, M Khan, SS Zareen, S Qamar | 🧾 International Journal of Intelligent Systems | 🔢 Cited by: 77 🧠

🧠 Context aware 3D UNet for brain tumor segmentation
🗓️ Year: 2020 | ✍️ P Ahmad, S Qamar, L Shen, A Saeed | 📘 MICCAI Brainlesion Workshop | 🔢 Cited by: 57 🧪

🧬 MH UNet: A multi-scale hierarchical based architecture for medical image segmentation
🗓️ Year: 2021 | ✍️ P Ahmad, H Jin, R Alroobaea, S Qamar, R Zheng, F Alnajjar, F Aboudi | 📰 IEEE Access | 🔢 Cited by: 51 🔬

🧴 Dense encoder-decoder–based architecture for skin lesion segmentation
🗓️ Year: 2021 | ✍️ S Qamar, P Ahmad, L Shen | 🧠 Cognitive Computation | 🔢 Cited by: 50 🧪

🧠 HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation
🗓️ Year: 2021 | ✍️ S Qamar, P Ahmad, L Shen | 📘 Brainlesion: Glioma, MS, Stroke and TBI Workshop | 🔢 Cited by: 46 💡

Elahe Karampour | Artificial Intelligence | Best Researcher Award

Ms. Elahe Karampour | Artificial Intelligence| Best Researcher Award

 

Ms. Elahe  Karampour  K.N.Toosi University Of Technology, Iran

Elahe Karampour is a dedicated researcher specializing in Geodesy and Geomatics Engineering with a focus on spatial-temporal data analysis and network science. She is currently pursuing her Master of Science at K.N. Toosi University of Technology, Tehran, Iran, with a thesis on analyzing location-based social networks using geometric curves. She has served as a research assistant, contributing to advancements in community detection and link prediction in spatial networks. Elahe is also an experienced educator, having taught GIS, spatial databases, and social network analysis. She has received national recognition for her academic excellence and was awarded a fully funded research visit to ScaDS.AI in Germany. Her expertise spans programming, spatial modeling, and AI-driven geospatial analytics.

🌍 Professional Profile:

Orcid

🏆 Suitability for the Best Researcher Award

 

Elahe Karampour is an outstanding researcher with significant contributions to geospatial data analysis, particularly in network science and location-based social networks. Her pioneering research integrates Ricci curvature and hyperbolic geometry for community detection and link prediction, leading to novel advancements in spatial-temporal modeling. She has published influential research in high-impact journals, demonstrating her expertise and innovation. Elahe’s research excellence is further recognized through a prestigious fully funded research visit to ScaDS.AI in Germany. With strong technical proficiency in R, Python, PostgreSQL, and GIS software, she bridges theory and application, developing intelligent recommender systems for urban planning. Her exceptional academic record, teaching excellence, and innovative research make her a prime candidate for the Best Researcher Award.

🎓 Education 

Elahe Karampour holds a Master of Science in Geodesy and Geomatics Engineering from K.N. Toosi University of Technology, Tehran, Iran (2021–2024). Her research focuses on spatial-temporal data analysis and social network modeling, with a thesis titled “Analysis of Location-Based Social Networks with Geometric Curves,” receiving a perfect grade of 20/20. She completed her Bachelor of Science in Geodesy and Geomatics Engineering at the University of Zanjan, Iran (2015–2020). Elahe ranked 23rd nationwide in the Iranian Master’s University Entrance Exam, showcasing her academic excellence. Her strong analytical and technical skills, coupled with expertise in GIS, AI, and network analysis, enable her to make significant contributions to the field of geospatial research and urban data science.

🏢 Work Experience 

Elahe Karampour has extensive research and teaching experience in geospatial data analysis and network science. As a Research Assistant (2022–2024) at K.N. Toosi University of Technology, she developed advanced models for community detection and link prediction in location-based social networks using geometric methods. She also worked as a Lecturer (2024) at Babol Noshirvani University of Technology, teaching spatial analysis and visualization to undergraduate students. Additionally, she served as a Teaching Assistant (2023–2024), guiding master’s and PhD students in GIS, social network analysis, and spatial databases. Her technical expertise in R, Python, PostgreSQL, and QGIS, combined with her ability to integrate AI with geospatial analysis, has positioned her as a leader in her research domain.

🏅 Awards and Honors 

Elahe Karampour has received multiple accolades for her academic and research excellence. She ranked 23rd nationwide in the Iranian Master’s University Entrance Exam (2021), demonstrating her strong academic foundation. She was awarded a fully funded research grant for a short-term visit to ScaDS.AI Center for Scalable Data Analytics and Artificial Intelligence in Germany (2023), recognizing her contributions to AI-driven geospatial analysis. Additionally, she was listed among the top-ranked teachers by her students for her exceptional teaching performance. Her work in network science and geospatial modeling has led to publications in high-impact journals, further cementing her status as a leading researcher. These achievements underscore her dedication and outstanding contributions to the field of geospatial and network science.

🔬 Research Focus 

Elahe Karampour’s research centers on spatial-temporal data analysis, network science, and AI-driven geospatial modeling. She specializes in analyzing location-based social networks using advanced mathematical frameworks such as Ricci curvature and hyperbolic geometry for community detection and link prediction. Her work integrates graph-based modeling with GIS technologies to enhance urban planning, mobility analysis, and personalized recommender systems. Elahe has developed innovative approaches to analyzing complex data structures, utilizing machine learning and AI techniques for geospatial applications. She is particularly interested in the intersection of mathematics, computer science, and geospatial technologies, aiming to create data-driven solutions for urban analytics and smart city development. Her research has been recognized internationally, reinforcing her expertise in geospatial data science.

📊 Publication Top Notes:

  • Karampour, E., Malek, M.R., & Eidi, M. (2025). Discrete Ricci flow: A powerful method for community detection in location-based social networks. Computers and Electrical Engineering, 123, 110302.