Mihkel Koel | Analytical Chemistry | Best Researcher Award

Dr. Mihkel Koel | Analytical chemistry
| Best Researcher Award

Senior Research Scientist at Tallinn University of Technology, Estonia.

Dr. Mihkel Koel is a senior research scientist in analytical chemistry at Tallinn University of Technology, Estonia. With a scientific career spanning over four decades, he has significantly advanced the fields of chromatography, green chemistry, and electromigration methods. A graduate in theoretical physics from Tartu State University and a Candidate of Chemical Sciences from Leningrad State University, Dr. Koel has led numerous international collaborations and editorial initiatives. His work has earned national and international recognition, including the prestigious Order of the White Star (IV class) and the Scientific Award of the Estonian Republic. A fellow of the Royal Society of Chemistry, he continues to contribute to analytical chemistry through research, teaching, and global scientific exchange.

🌍 Professional Profile:

Scopus

🏆 Suitability for the Best Researcher Award :

Dr. Mihkel Koel is an exemplary candidate for the Best Researcher Award due to his lifelong dedication to innovation in analytical chemistry. With significant contributions to computer-aided chromatography and green chemistry, his research has advanced sustainable chemical analysis techniques globally. He has led major research projects, international scientific exchanges, and editorial work across leading journals. Recognized with national honors and global fellowships, Dr. Koel’s influence spans academia, industry, and policymaking. His pioneering methodologies, global collaborations, and commitment to sustainable science align perfectly with the core values of this award. As a thought leader and mentor, he continues to inspire new generations in chemistry and sustainable scientific development.

🎓 Education :

Dr. Mihkel Koel earned his degree in theoretical physics from Tartu State University (1967–1972). He later pursued postgraduate studies (1984–1989) at the Institute of Chemistry of the Estonian Academy of Sciences, where he specialized in analytical chemistry. His Candidate of Chemical Sciences degree was awarded in 1989 from Leningrad State University, Russia, for his dissertation on correlation chromatography. This strong foundation in both theoretical physics and analytical chemistry enabled him to bridge disciplines and innovate at the intersection of physical science and chemical analysis. His educational journey laid the groundwork for his groundbreaking contributions in electromigration, chromatographic separation, and sustainable analytical technologies.

🏢 Work Experience :

Dr. Koel began his research career in 1974 at the Institute of Chemistry of the Estonian Academy of Sciences as an engineer. Over the next several decades, he advanced through roles including junior researcher, senior scientist, and eventually lead research scientist at Tallinn University of Technology. He has participated in extended scientific exchanges at institutions like Duke University (USA), University of Helsinki (Finland), Vienna Technical University (Austria), and University of Lisbon (Portugal). A Fulbright Fellow and recipient of multiple international research grants, he has organized and chaired several global conferences on sustainable chemistry. Since 2005, he has served as the head of major analytical research efforts at Tallinn University of Technology.

🏅Awards and Honors

Dr. Koel has received numerous accolades recognizing his lifelong commitment to science. In 1991, he received the Scientific Award of the Estonian Republic for work in computer-aided chromatography. In 2006, he was awarded the Order of the White Star (IV class) for distinguished service to Estonia. Additional honors include the Golden Badge of Tallinn University of Technology (2004) and the Honorary Medal “Mente et Manu” (2018). He is a Fellow of the Royal Society of Chemistry, and a member of both the Estonian and American Chemical Societies. He has served on multiple editorial boards and organized leading international conferences, amplifying his influence in analytical and green chemistry worldwide.

🔬 Research Focus :

Dr. Mihkel Koel’s research centers on analytical chemistry, with particular emphasis on chromatographic separation, green chemistry, and electromigration techniques. His early work on correlation chromatography paved the way for automated chemical analysis, while his later studies introduced eco-friendly solvents and processes for sustainable chemical analytics. He has also contributed to capillary electrophoresis and ionic liquids for advanced biochemical detection. His research bridges theory and application, offering solutions for environmental monitoring, petrochemical analysis, and pharmaceutical testing. By integrating theoretical knowledge with real-world challenges, Dr. Koel’s work promotes green analytical methodologies, aligning science with sustainability goals and fostering global impact through education, research, and policy engagement.

📊 Publication Top Notes:

Developments in analytical chemistry initiated from green chemistry
Cited by: 12 | Year: 2022

Ferrocene-Modified Resorcinol–Formaldehyde Aerogels
Cited by: 3 | Year: 2023

Preparation and characterization of lignin-derived carbon aerogels
Cited by: 5 | Year: 2023

Implementing greening into design in analytical chemistry
Cited by: 15 | Year: 2022

Extraction of bioactive compounds from Dipsacus fullonum leaves using deep eutectic solvents
Cited by: 16 | Year: 2022

Characterization of Organosolv Lignins and Their Application in the Preparation of Aerogels
Cited by: 23 | Year: 2022

Carbon Aerogel Platinum-Praseodymium Oxide Nanocatalyst for Methanol Oxidation in 0.5 M Sulfuric Acid
Cited by: 2 | Year: 2023

Editorial overview: A closer look on green developments in analytical chemistry: Green analytical chemistry is going mainstream
Cited by: 17 | Year: 2022

🔚 Conclusion

Prof. Mihkel Koel’s body of work is a testimony to sustained excellence, innovation, and global collaboration. His contributions to analytical and green chemistry have not only advanced the academic frontier but also directly impacted environmental sustainability and biochemical analysis practices.Given his robust research track, international acclaim, and national recognition, Prof. Mihkel Koel is an outstanding nominee for the Best Researcher Award.

Rajendar Burki | Analytical Chemistry | Best Researcher Award

Dr. Rajendar Burki | Analytical Chemistry | Best Researcher Award

Biological E Limited, India

👨‍🎓Profiles

👨‍🎓 Early Academic Pursuits

His academic foundation began with a Bachelor of Science in Microbiology and Chemistry from Kakatiya University, India, which he completed in April 2000. His educational journey continued with a Master of Science in Analytical Chemistry from NIT Warangal (Deemed University), awarded. He further advanced his knowledge and expertise by earning a Ph.D. in Bioanalytical/Biological Chemistry from Tohoku University, Japan. His doctoral and postdoctoral experiences equipped him with the rigorous scientific acumen required for pioneering work in protein biochemistry and analytical research.

đź’Ľ Professional Endeavors

He has a distinguished career spanning over two decades, marked by leadership and significant contributions in the field of vaccine research and development. Since, he has been with Biological E Limited in Hyderabad, where he serves as Vice President of Research and Development. In this capacity, he leads a team of over 30 scientists and plays a crucial role in vaccine R&D, encompassing recombinant proteins, bacterial, viral, and VLP vaccines. His experience includes product development from initial concepts to late-stage clinical material manufacturing (CMC expertise), process development, analytical sciences, and biophysical analysis.

🌟 Key Roles and Responsibilities

Regulatory Expertise: Dr. Burki has spearheaded regulatory documentation and submissions for various vaccine projects, ensuring thorough analytical and process development. Team and Resource Management: He excels in building and managing skilled teams, overseeing space planning, budget allocation, and resource optimization. Documentation and Compliance: Authored and reviewed critical documents including MFRs, BPRs, SOPs, and reports on method development, qualification, and validation.

🏆 Contributions and Achievements

He has led numerous groundbreaking projects in vaccine development that have significantly impacted public health. His notable achievements include: Approval and Development: Instrumental in obtaining PCV vaccine approval for Biological E, Methodology Development: Created and validated analytical methods for bacterial and viral vaccines, Process Engineering: Pioneered conjugation and downstream processes for mono-conjugate preparation, Formulation Optimization: Designed and enhanced formulations for various vaccine types, Technology Transfer: Successfully managed the transfer of processes and analytical methods to production and quality control units, Regulatory Success: Played an essential role in preparing technical packages for submissions to PCT (RCGM), CDSCO, WHO, and FDA.

đź§Ş Research Focus and Impact

His research is highly focused on the fields of protein expression, characterization, and vaccine development. His early career work at the University of Alabama at Birmingham involved exploring the molecular mechanisms of the ClpA molecular chaperone, including protein cloning, expression, purification, and binding analysis of peptide substrates. This foundational work in biophysical chemistry has contributed to his later expertise in analytical and biophysical methods, particularly for characterizing complex biological molecules.

📚 Academic Citations and Recognition

His contributions have earned him recognition and accolades, underscoring his influence in the scientific community: JST Doctoral Fellowship: Awarded during his Ph.D. program, showcasing his academic prowess, Postdoctoral Fellowship: Secured for advanced research at the University of Alabama, Biopharma Leadership Award (2022): Presented by Bluetech Media in acknowledgment of his leadership in the biopharmaceutical industry, FDD Leaders Award (2023): Honored by Express Pharma, recognizing his exceptional leadership and impact in vaccine development.

đź’» Technical Skills

He is highly skilled in a range of analytical and biophysical techniques, essential for protein characterization and vaccine development: Chromatography: Proficient in protein expression, purification, and analysis, Spectroscopy and Fluorescence Studies: Used for in-depth biochemical investigations, Enzyme Kinetics: Applied for understanding enzyme functionality, Analytical Method Development: Expertise in developing and validating methods for both small molecules and large biomolecules.

🎓 Teaching Experience

Throughout his career, Dr. Burki has shared his expertise through mentoring and training in analytical techniques and biophysical methodologies. His experience as a postdoctoral researcher included training peers and contributing to research team learning in protein analysis and purification techniques.

🌱 Legacy and Future Contributions

His leadership at Biological E Limited and his prior work have cemented his legacy as a trailblazer in vaccine R&D and analytical biochemistry. Looking ahead, his goal is to continue advancing the science of vaccine development and contribute to global health through innovative research and fostering the next generation of scientific leaders. With his expertise, he is set to influence future developments in vaccine technology, analytical methodologies, and cross-disciplinary collaboration.

đź“–Notable Publications

 

 

 

 

 

 

 

 

Haowen Huang | Chemical and Bioanalysis | Best Researcher Award

Prof. Haowen Huang | Chemical and Bioanalysis | Best Researcher Award

Hunan University of Science and Technology, China

👨‍🎓Profile

🎓 Early Academic Pursuits

Haowen Huang earned his Ph.D. in Analytical Chemistry from the Institute of Chemistry, Chinese Academy of Sciences, in 2004, following his M.S. in Analytical Chemistry from Hunan University in 1999. His early academic journey laid a strong foundation in analytical chemistry, with a focus on the development of advanced chemical and biosensing methods.

👨‍🏫 Professional Endeavors

He is currently a Professor at the School of Chemistry and Chemical Engineering at Hunan University of Science and Technology, a position he has held since 2011. Prior to this, he served as an Associate Professor at the same institution from 2006 to 2011. His professional career is marked by a commitment to advancing the field of analytical chemistry, particularly in the development of novel biosensors and nanomaterials.

🔬 Contributions and Research Focus

His research primarily focuses on the development of biosensors and analytical platforms using noble metal nanomaterials, such as gold nanoparticles, nanoclusters, and carbon dots, for the detection of biomolecules like proteins, nucleic acids, and small molecules. He has also worked extensively on surface plasmon resonance (SPR) systems, applying SPR imaging to enhance molecular recognition capabilities. His work in nanomaterials and advanced analytical techniques plays a key role in applications across biomedical diagnostics, environmental monitoring, and single-cell analysis.

🌍 Impact and Influence

His contributions have had a significant impact on the fields of analytical chemistry and biosensor development. His pioneering work with gold nanorods and nanoclusters for multiplex detection of disease markers and heavy metals has positioned him as a leader in the field. Additionally, his developments in SPR imaging systems have advanced chiral recognition and biomolecular interaction studies, further enhancing the molecular diagnostics landscape.

📚 Academic Cites

Although specific citation numbers are not provided, Dr. Huang's research has been widely acknowledged in the scientific community, evidenced by his work's application in major areas of biosensing, diagnostics, and environmental monitoring. His work continues to influence new developments in the synthesis and application of nanomaterials.

🛠️ Technical Skills

He is an expert in the synthesis and characterization of nanomaterials, particularly gold and carbon-based nanoclusters. He is highly proficient in the fabrication of optical biosensors and in the use of surface plasmon resonance imaging systems. His expertise extends to the development of advanced analytical methods for complex biological media, which is crucial for a variety of applications in diagnostics and environmental monitoring.

📚 Teaching Experience

As a professor, He teaches courses in Analytical Chemistry and Instrumental Analysis, in addition to supervising laboratory courses. He mentors graduate and undergraduate students, guiding research projects that focus on the synthesis of nanomaterials and their application in biosensor development. His teaching fosters innovation in the next generation of researchers in the fields of analytical chemistry and biosensing technologies.

🏆 Legacy

His legacy lies in his contributions to the development of cutting-edge biosensor technologies and nanomaterial applications. His work has shaped the field of molecular detection and bioanalytics, particularly in terms of how nanomaterials can be integrated into diagnostic tools for disease detection and environmental monitoring.

đź”® Future Contributions

Looking ahead, He is poised to continue his groundbreaking work in the development of next-generation biosensors and analytical techniques. His research will likely advance the use of nanomaterials in precision medicine, single-cell analysis, and real-time environmental monitoring. His expertise in SPR imaging and nanomaterials synthesis is expected to drive further innovation in these rapidly evolving fields.

đź“–Notable Publications

 

Martín Fernández Baldo | Bioanalítica | Best Researcher Award

Dr. Martín Fernández Baldo | Bioanalítica | Best Researcher Award 

Universidad Nacional de San Luis, Argentina

👨‍🎓 Profile

🎓 Early Academic Pursuits

He pursued a solid academic journey, beginning with his primary education at Justo José de Urquiza in Maipú, Mendoza, where he graduated in December 1989. He later attended Liceo Militar General Espejo for his secondary education, graduating as a Bachiller and Subteniente de Reserva del Arma de Infantería in December 1994.

🏛 Higher Education

Fernández Baldo pursued his Bachelor's degree in Biochemistry from the Universidad Nacional de San Luis, completing his studies in 2007. He later obtained his Doctorate in Biochemistry, with his thesis titled "Control Biológico en Postcosecha: Desarrollo de Metodologías para la Detección y Cuantificación de Mohos Fitopatógenos y Micotoxinas". His thesis work was guided by Dr. María Isabel Sanz Ferramola (Director) and Dr. Germán Messina (Co-Director).

đź’Ľ Professional Endeavors

Currently, Martín Fernández Baldo is based in San Luis, Argentina, where he works at the Universidad Nacional de San Luis. He holds positions in both the Facultad de Química, Bioquímica y Farmacia in the Department of Chemistry and the Department of Bioquímica y Ciencias Biológicas. He is associated with CONICET and works in the Instituto de Química de San Luis (INQUISAL), contributing to the Laboratorio de Bioanalítica.

🔬 Contributions and Research Focus

Fernández Baldo's research is centered around bioanalytical chemistry and nanotechnology. He has expertise in synthesizing nanomaterials using both chemical and biological methods (such as microorganisms like fungi and bacteria). His work includes the use of these nanomaterials in biosensors with electrochemical detection or laser-induced fluorescence (LIF) for the determination of various biochemical, environmental, and agro-food analytes.

In recent years, his research has expanded to focus on the early diagnosis of epithelial cancers (breast, colorectal, lung, prostate) through the determination of specific tumor markers. He is also dedicated to the diagnosis of infectious diseases like parasitic, viral, and fungal infections.

🌍 Impact and Influence

Fernández Baldo's work in the field of bioanalytical chemistry and nanotechnology is making significant strides in improving diagnostic tools for both cancer and infectious diseases. His interdisciplinary approach, combining nanotechnology with bioanalytical methods, has had a notable impact on public health diagnostics, especially in low-resource settings where early and accurate detection is critical.

🛠️ Technical Skills

His technical expertise spans a variety of advanced techniques, including: Nanomaterial synthesis (chemical and biological methods). Characterization of nanomaterials using: UV-vis, XRD, XRF, FTIR, DLS, SEM, EDS, TEM. Biosensor development for: Electrochemical detection, Laser-induced fluorescence (LIF) detection.

🏅 Teaching Experience

Throughout his career, Martín Fernández Baldo has also been involved in teaching and mentorship. He contributes to postgraduate courses, such as the course on "Instrumental Analysis Methods: Biological Applications", offered by the Universidad Nacional de Cuyo. His participation in academia extends to supervising students and guiding research projects in the fields of analytical chemistry and bioanalysis.

📚 Legacy and Future Contributions

Looking forward, Martín Fernández Baldo aims to further his research in bioanalytical chemistry and nanotechnology, specifically focusing on the early diagnosis of cancers and infectious diseases. His goal is to develop more efficient, cost-effective diagnostic tools that can be applied globally. His work will likely continue to influence the fields of public health, analytical chemistry, and nanotechnology, contributing to the betterment of global diagnostic practices.

📖  Notable Publications

Copper nanoparticles as a potential emerging pollutant: Divergent effects in the agriculture, risk-benefit balance and integrated strategies for its use

Authors: Tortella, G., Rubilar, O., Fincheira, P., Fernandez-Baldo, M., Seabra, A.B.
Journal: Emerging Contaminants
Year: 2024

Metal nanoparticles and pesticides under global climate change: Assessing the combined effects of multiple abiotic stressors on soil microbial ecosystems

Authors: Fernández-Triana, I., Rubilar, O., Parada, J., Seabra, A.B., Tortella, G.R.
Journal: Science of the Total Environment
Year: 2024

Electrochemical microfluidic immunosensor with graphene-decorated gold nanoporous for T-2 mycotoxin detection

Authors: Fernandez Solis, L.N., Silva Junior, G.J., Bertotti, M., Fernández-Baldo, M.A., Regiart, M.
Journal: Talanta
Year: 2024

Advances in Nanomaterials and Composites Based on Mesoporous Materials as Antimicrobial Agents: Relevant Applications in Human Health

Authors: Gomez, G.E., Hamer, M., Regiart, M.D., Soler Illia, G.J.A.A., Fernández-Baldo, M.A.
Journal: Antibiotics
Year: 2024

Use of Mechanochemical Methodology to Explore the Formation of a New Crystalline Phase in the Curcumin-Quercetin System

Authors: D'Vries, R.F., Pastrana-Dávila, A., Pantoja, K.D., Gomez, G.E., Fernández-Baldo, M.A.
Journal: ChemistrySelect
Year: 2024

Five years of advances in electrochemical analysis of protein biomarkers in lung cancer: a systematic review

Authors: Regiart, M., Fernández-Baldo, M.A., Navarrete, B.A., Valero, T., Ortega, F.G.
Journal: Frontiers in Chemistry
Year: 2024

Origami Paper-Based Electrochemical Immunosensor with Carbon Nanohorns-Decorated Nanoporous Gold for Zearalenone Detection

Authors: Laza, A., Pereira, S.V., Messina, G.A., Regiart, M.D., Bertolino, F.A.
Journal: Chemosensors
Year: 2024