Yang Li | Electrical Engineering | Best Researcher Award

Assoc. Prof. Dr. Yang Li | Electrical Engineering
| Best Researcher Award

Director at Forensic Science Institute China People’s Police University, China.

Dr. Li Yang is an Associate Professor at the China People’s Police University, specializing in electrical fire investigation and forensic evidence analysis. With a Ph.D. in Safety Science and Engineering from Xi’an University of Science and Technology and extensive research on arc faults, short-circuit initiation, and pyrolysis gas analysis, he has become a leading voice in electrical fire forensics. He serves on the Committee on Electrical Fire Safety of the China Fire Association and has led multiple national and provincial projects. Recognized as a Distinguished Teacher of Hebei Province in 2022, his contributions have significantly enhanced fire evidence identification technologies. He has also played a pivotal role in national training programs and technical innovations for fire investigators.

🌍 Professional Profile:

Scopus

🏆 Suitability for the Best Researcher Award :

Dr. Li Yang is a strong candidate for the Best Researcher Award due to his pioneering work in electrical fire investigation. His research advances the forensic science field through the development of intelligent identification technologies and fault simulation devices. He has been instrumental in leading key national and provincial projects, authoring technical patents, and contributing to cutting-edge publications. His academic leadership, combined with practical innovation, addresses critical safety concerns in fire investigation. Recognition by both academic institutions and the Ministry of Public Security underscores his impact. His ability to integrate science, engineering, and real-world application makes him not only a productive researcher but a transformative force in safety science.

🎓 Education :

Li Yang holds a Doctor of Philosophy in Safety Science and Engineering from Xi’an University of Science and Technology (2018–2022). Prior to that, he earned a Master of Science in Materials Science (2008–2011) and a Bachelor of Science in Fire Investigation (2004–2008), both from the China People’s Police University. His interdisciplinary educational background has equipped him with a solid foundation in forensic materials, fire safety engineering, and investigative techniques. This strong academic progression supports his current research and teaching in the field of electrical fire forensics and contributes to the training of future safety professionals in law enforcement and public safety sectors.

🏢 Work Experience :

Dr. Li Yang has served in various academic positions at the China People’s Police University since 2014. Currently an Associate Professor in the Investigation College (since 2020), he previously held positions in the Department of Fire Engineering. Over the years, he has been deeply involved in curriculum development, investigator training, and research supervision. His expertise has also been sought by national bodies such as the Ministry of Public Security, where he serves as a fire-related case investigation expert. He has combined teaching excellence with project leadership across government-funded and institutional research. His dual role as educator and researcher enables him to bridge academic knowledge with field application effectively.

🏅 Awards and Honors :

Dr. Li Yang has received numerous accolades for his contributions. Notably, he was honored as a Distinguished Teacher of Hebei Province in 2022 and selected as a Fire Investigation Expert by the Criminal Investigation Bureau of the Ministry of Public Security in 2020. He is a Committee Member on Electrical Fire Safety with the China Fire Association. His research earned the Third Prize from the Ministry of Public Security Science and Technology Award in 2019. These awards reflect both his academic excellence and societal impact. Through these honors, Dr. Yang has been recognized for his research leadership, technological innovation, and dedication to advancing fire safety practices across China.

🔬 Research Focus :

Dr. Li Yang’s research centers on electrical fire forensics, particularly the mechanisms behind short-circuit faults, arc-related ignition, and trace identification. He applies cutting-edge tools such as STA-FTIR-GC/MS to analyze pyrolysis gases from common materials in electrical systems, aiming to establish the forensic links between device failure and fire cause. His studies also examine the behavior of molten droplets, overcurrent wire degradation, and fault inversion modeling under variable environmental conditions. He leads national R&D programs and technical research projects focusing on intelligent identification technologies and early-warning mechanisms. His goal is to enhance fire evidence analysis reliability and improve training and tools for first responders and forensic investigators in China.

📊 Publication Top Notes:

🔥 Lin Q‑W, Li X, Li Y, Deng J, Man P‑R, Jia Y‑Z. Comparative investigation on thermo‑oxidative degradation and fire characteristics of flame‑retardant and non‑flame‑retardant polyvinyl chloride wires. Thermal Science and Engineering Progress. 2025;57:103210. • 📄 Cited X times

Lin Q‑W, Li Y, Man P‑R, Jin Y, Lyu H, Wang H, Zhao Y, Su W, Deng J. Effects of applied voltages on the occurrence features of short circuits in building cables exposed to constant radiation heat. Journal of Building Engineering. 2024;98:111038. • 📄 Cited Y times

🧪 Lin Q‑W, Li Y, Deng J, F‑F He, P‑R Man. Thermo‑oxidative degradation behavior of poly(vinyl chloride) insulation for new and overloaded wires via TG‑FTIR. Journal of Applied Polymer Science. 2024;141(39):e55994. • 📄 Cited Z times

🧯 Li Z, Lin Q‑W, Li Y, et al. Effect of the current on the fire characteristics of overloaded polyvinyl chloride copper wires. Polymers. 2022;14(21):4766.* • 📄 Cited A times

🔥 Lin Q‑W, Li Y, Deng J. Formation mechanism and microstructural analysis of blistering marks on overcurrent copper wires. Fire Safety Journal. 2024;150(Pt A):104268. • 📄 Cited B times

Li Y, Sun Y, Gao Y, et al. Analysis of overload‑induced arc formation and bead characteristics in a residential electrical cable. Fire Safety Journal. 2022;131:103626. • 📄 Cited C times

Mahdi Zarnoush | Renewable Energy | Best Researcher Award

Mr. Mahdi Zarnoush | Renewable Energy
| Best Researcher Award

Researcher at K. N. Toosi University of Technology, Iran.

Mahdi Zarnoush is a dedicated researcher in Mechanical Engineering at K. N. Toosi University of Technology, specializing in energy conversion, renewable energy, and energy storage systems. With a strong academic foundation and a passion for sustainable development, he has contributed to over 10 research projects and published four ISI-indexed journal papers, with additional work under review. His innovative research advances efficient and optimized energy solutions, aligning with global energy transition goals. As a journal reviewer and active member of scientific associations, he plays a pivotal role in maintaining academic integrity and excellence. His scholarly contributions and active engagement in the research community make him a compelling candidate for the Best Researcher Award.

🌍 Professional Profile:

ORCID

Scopus

Google scholar 

🏆 Suitability for the Best Researcher Award :

Mahdi Zarnoush exemplifies the qualities of a top-tier researcher through his impactful work in energy conversion and storage technologies. His contributions to the field, including peer-reviewed journal publications and a forthcoming book chapter, demonstrate both depth and innovation. Zarnoush’s research addresses pressing global energy challenges by enhancing energy system efficiency and sustainability. His active involvement in academic collaborations, reviewing duties for respected journals, and leadership in scientific associations highlight his professional maturity and scholarly commitment. These accomplishments, coupled with his drive for excellence in renewable energy and energy transition research, mark him as highly suitable for the Best Researcher Award and position him as a rising leader in sustainable energy solutions.

🎓 Education :

Mahdi Zarnoush holds an M.Sc. in Mechanical Engineering with a specialization in Energy Conversion from K. N. Toosi University of Technology, a premier institution in Iran. He earned his B.Sc. in Mechanical Engineering from the University of Kashan, where he built a strong foundation in thermodynamics, fluid mechanics, and system design. During his graduate studies, Zarnoush focused on advanced energy systems, optimizing energy conversion processes and exploring renewable technologies. His academic path was marked by a commitment to research, sustainability, and innovation, enabling him to contribute meaningfully to both theoretical and applied aspects of energy engineering. His educational background provides the technical depth and scientific rigor necessary for impactful contributions in academia and industry alike.

🏢 Work Experience :

Mahdi Zarnoush is currently a Research Associate at K. N. Toosi University of Technology, where he has led and contributed to over ten academic research projects in energy systems and sustainable technologies. His expertise spans energy conversion, renewable integration, and energy storage modeling. Zarnoush has also served as a reviewer for reputable journals, such as the Journal of Energy Storage, reflecting peer recognition of his analytical skills and subject expertise. He collaborates with leading researchers on energy optimization projects and contributes regularly to the university’s Mechanical Engineering Scientific Association. His experience blends rigorous research with practical insight, advancing the development of efficient energy systems and contributing to the knowledge base in clean energy transitions.

🏅 Awards and Honors :

While formal awards are not currently listed, Mahdi Zarnoush’s academic recognition is reflected in his publication record, peer review contributions, and active involvement in leading research initiatives. His four published ISI-indexed journal papers and two under-review manuscripts have garnered increasing citations, indicating growing impact. His selection as a reviewer for high-impact journals like the Journal of Energy Storage speaks to his credibility and expertise in the field. Zarnoush’s participation in multiple high-level academic projects and his contribution to an upcoming book chapter further demonstrate his recognized value in the research community. His work continues to receive acknowledgment through scholarly collaboration, invitations for academic contributions, and consistent involvement in scientific development platforms.

🔬 Research Focus :

Mahdi Zarnoush’s research is centered on the development of advanced, sustainable, and efficient energy systems. His key areas include energy conversion technologies, renewable energy integration, energy transition strategies, and storage systems. He emphasizes optimization and modeling of thermal and hybrid energy systems to improve reliability and reduce environmental impact. Zarnoush’s work bridges theory and application, targeting real-world solutions to pressing energy issues. He explores innovations in smart energy systems and sustainable infrastructure, with a commitment to facilitating the global shift toward clean energy. Through academic publications, ongoing research projects, and cross-disciplinary collaborations, he aims to contribute foundational knowledge and practical tools that accelerate progress in the fields of renewable energy and sustainable technology.

📊 Publication Top Notes:

📘 Comparative evaluation of advanced adiabatic compressed gas energy storage systems
📅 Year: 2023 | 📊 Cited by: 43 | 📰 Journal of Energy Storage

📘 Comparative investigation for sustainable freshwater production in hybrid multigrid systems based on solar energy
📅 Year: 2024 | 📊 Cited by: 11 | 📰 Journal of Cleaner Production

📘 Integration of Emerging Technologies in Next-Generation Electric Vehicles: Evolution, Advancements, and Regulatory Prospects
📅 Year: 2025 | 📊 Cited by: 8 | 📰 Results in Engineering

📘 Comprehensive examination of a green hybrid biomass-integrated compressed air energy storage system with PEM hydrogen production across various operating modes
📅 Year: 2025 | 📊 Cited by: 2 | 📰 Journal of Energy Storage