Jamshaid Ul Rahman | Artificial Intelligence | Editorial Board Member

Dr. Jamshaid Ul Rahman | Artificial Intelligence
| Editorial Board Member

Abdus Salam School of Mathematical Sciences, GC University Lahore | Pakistan

Dr. Jamshaid Ul Rahman’s research spans artificial intelligence, deep learning, mathematical modeling, and scientific computing, with a strong emphasis on applying advanced neural architectures to complex problems in molecular modeling, epidemiology, biomechanics, and computational physics. His work integrates graph neural networks, wavelet neural networks, periodic neural networks, and deep optimization frameworks to improve prediction accuracy and interpretability in molecular property analysis, virus transmission modeling, and dynamic system simulation. He has contributed significantly to AI-driven analysis of infectious diseases such as Marburg, Ebola, and Hepatitis C through nonlinear modeling, hybrid optimization, and neural simulation techniques. His research also advances computational mechanics, including deep learning-based vibration analysis in tapered beams, micro-electromechanical systems, and nonlinear oscillators. In cheminformatics, he has enhanced molecular property prediction using quantized GNNs, optimized activation functions, and improved training strategies for message-passing networks. His contributions extend to biophysical modeling, where neural networks simulate glycolysis, biochemical oscillators, and biological system dynamics with high fidelity. He has also explored angular softmax variations, Laplacian smoothing, and stochastic gradient methodologies in deep convolutional networks, advancing core theoretical aspects of machine learning. Across more than fifty publications, his work consistently integrates mathematical rigor with cutting-edge AI to address interdisciplinary scientific and engineering challenges.

 Profile:  Google Scholar

Featured Publications

Rahman, J. U., Noureen, I., Mannan, A., & Uwitije, R. (2025). PhyFold: Environment aware physics informed neural network for protein folding dynamics.

Ul Rahamn, J., Iqbal, M. A., Rasool, A., & Uwitije, R. (2025). p-GIN: A graph isomorphism network based on p-Laplacian operator to enhance molecular property prediction. Discover Applied Sciences, 7(11), 1251.

Shoket, N., Ul Rahman, J., & Zafar, N. (2025). Mathematical modeling and computational investigation of the COVID-19 epidemic using wavelet neural networks and coupled optimization. SN Soft Computing, 1–18.

Rahman, J. U., Ali, H., & Rassol, A. (2025). A comprehensive analysis of optimizers in message passing neural networks for molecular property prediction task. Computational Biology and Chemistry, 108556

Chaitanya Kumar Mankala | Machine Learning | Best Computer Engineering Award

Dr. Chaitanya Kumar Mankala | Machine Learning
| Best Computer Engineering Award

Villanova University | United States

Dr. Chaitanya Kumar Mankala’s research focuses on advancing sustainable, scalable, and intelligent computing through the convergence of artificial intelligence, serverless architectures, and neuroidal network models. His work in real-time natural language processing emphasizes the development of energy-efficient and low-latency AI systems using cloud-native parallel processing on platforms such as AWS, enabling large-scale language models to operate dynamically with minimal environmental impact and operational cost. His contributions to evolutionary artificial neuroidal networks propose next-generation neural architectures capable of adaptively restructuring themselves through evolutionary algorithms to enhance learning efficiency, fault tolerance, and inference accuracy across diverse data environments. By integrating distributed serverless infrastructure with neuromorphic design principles, his research addresses limitations in current AI scalability, offering frameworks that support autonomous decision-making and real-time processing for healthcare, cybersecurity, and industrial automation. His conference work on the Next Generation Artificial Neural Network further explores biologically inspired computational models that bridge cognitive mechanisms with advanced deep learning, paving the way for highly interpretable, resilient, and self-evolving AI systems. Collectively, his research advances the paradigm of intelligent computing by integrating sustainability, scalability, and adaptive learning, contributing to the future of autonomous AI systems deployed on edge and cloud environments for mission-critical applications.

 Profile:  Orcid | Google Scholar 

Featured Publications

Mankala, C. K., & Silva, R. J. (2025). Sustainable real-time NLP with serverless parallel processing on AWS. Information, 16(10). https://doi.org/10.3390/info16100903

Mankala, C. K. (2025). Evolutionary artificial neuroidal network using serverless architecture [Doctoral dissertation].

Mankala, C. K., & Silva, R. (2023, November 16). Next generation artificial neural network. In Proceedings of the ICEHTMC Conference.

Tomohiro Hayashida | Machine Learning | Best Researcher Award

Prof. Tomohiro Hayashida | Machine Learning
| Best Researcher Award

Professor at Hiroshima University , Japan.

Professor Tomohiro Hayashida is a distinguished scholar in decision-making, machine learning, and optimization, currently serving at Hiroshima University. After earning his Master’s and Ph.D. in Engineering from the same institution, he joined the university as a Research Associate in 2006 and steadily rose to Full Professor by 2024. With over 80 academic publications, Prof. Hayashida has led competitive national research grants and worked on practical innovations in transportation and scheduling algorithms. His interdisciplinary collaborations span across academia and industry, reflecting his commitment to both theoretical advancements and real-world applications. His citation record, leadership in JSPS-funded projects, and role in applied AI solutions exemplify his deep impact in computational engineering and operations research.

🌍 Professional Profile:

Scopus

🏆 Suitability for the Best Researcher Award :

Prof. Tomohiro Hayashida exemplifies the qualities deserving of the Best Researcher Award. He has produced over 50 peer-reviewed journal papers, many in top-tier SCI/Scopus-indexed journals. As Principal Investigator of multiple JSPS KAKEN-funded projects, including those in evolutionary computing and dynamic systems, he has shown consistent research leadership. His collaborative work with industry, such as optimizing dispatch algorithms with SmartRyde Inc., demonstrates strong translational research. With an h-index around 11–12 and 442+ citations, he balances scholarly excellence and societal impact. His active role in multi-disciplinary collaborations—both domestic and international—further reinforces his stature as an innovative and impactful researcher, making him highly suitable for the Best Researcher Award.

🎓 Education :

Prof. Hayashida received his entire higher education from Hiroshima University. He completed his Master’s degree in Engineering in 2006 and subsequently pursued and earned his Ph.D. in Engineering. His academic training focused on optimization theory, intelligent systems, and operations research, equipping him with a robust foundation in both theoretical and applied research. The university’s focus on computational intelligence and engineering sciences helped shape his research vision early in his career. His seamless transition from student to researcher within the same academic institution showcases his consistent excellence and growth as a scholar. This strong academic grounding laid the basis for his long-term contributions to machine learning, decision sciences, and interdisciplinary engineering research.

🏢 Work Experience :

Prof. Tomohiro Hayashida began his academic career in 2006 as a Research Associate at Hiroshima University, immediately after earning his Master’s degree. He was promoted to Assistant Professor in 2007, Associate Professor in 2015, and Full Professor in 2024. He has over 18 years of academic experience in teaching, research, and supervision. Beyond academic duties, he is active in government-funded research and industry collaborations, such as the ride-hailing optimization project with SmartRyde Inc. He also contributes to the Digital Manufacturing Education and Research Center at Hiroshima University. His extensive experience in both research project leadership and educational innovation showcases a balanced, impactful academic career with national and international influence.

🏅Awards and Honors

While specific award titles are not publicly listed, Prof. Hayashida’s selection as Principal Investigator for multiple highly competitive JSPS KAKEN Grants—including Young Researcher awards and Scientific Research (C) projects—reflects significant national recognition of his research excellence. His promotion to Full Professor at Hiroshima University, a top-tier Japanese institution, itself is a mark of academic distinction. He has been entrusted with strategic roles in collaborative projects, some of which have gained media coverage, such as the SmartRyde dispatch algorithm. These achievements, combined with a strong citation record and presence in high-impact journals, serve as implicit acknowledgment of his contributions to AI, optimization, and applied decision-making sciences within both academic and practical domains.

🔬 Research Focus :

Prof. Hayashida’s research centers on decision-making, machine learning, optimization, and evolutionary computation. His work addresses complex real-world problems like multi-objective scheduling, group decision analysis, and dynamic system optimization. Through JSPS-funded projects, he has developed algorithms for adaptive agents, cooperative enterprises, and evolutionary scheduling. His recent collaborations include intelligent systems for ride-hailing and dynamic dispatching. He integrates mathematical modeling with practical applications, focusing on AI-driven solutions for industries such as energy systems and transportation. His interdisciplinary approach merges operations research, computer science, and systems engineering. With over 80 publications and national/international partnerships, his research advances both academic knowledge and technological innovation, particularly in adaptive, data-driven decision systems.

📊 Publication Top Notes:

📘 Integrated Optimization Method for Task Allocation and Hierarchical Reinforcement Learning in Cargo Transport Robots
🗓️ Year: 2025 | 📚 Journal: IEEJ Transactions on Electronics Information and Systems |

📄 Constrained-multiobjective Evolutionary Algorithm for Distribution System Reconfiguration under Severe Constraints
🗓️ Year: 2025 | 📚 Conference Paper |

🚚 Integrating Task Allocation and Hierarchical Reinforcement Learning for Optimized Cargo Transport Routing
🗓️ Year: 2025 | 📚 Conference Paper |

Distribution System Reconfiguration by an Evolutionary Algorithm using Constraint-Guided Dominance and Archive-Based Individual Preservation Strategy
🗓️ Year: 2024 | 📚 IEEJ Transactions on Power and Energy |

📊 Expectation and Fractile Models for Decentralised Distribution Systems under Demand Uncertainty and their Computational Methods
🗓️ Year: 2024 | 📚 International Journal of Operational Research |

🎓 WIP: Machine Learning Models for Predicting Student Performance in IoT-Enhanced Education
🗓️ Year: 2024/2025 | 📚 Conference Paper |

📈 WIP: Study on a Data-Driven Adaptive Learning Support System Design for Individualized Optimal Learning
🗓️ Year: 2024/2025 | 📚 Conference Paper |