Geon-Ju Choi | Energy Harvesting | Best Researcher Award

Dr. Geon-Ju Choi | Energy Harvesting
| Best Researcher Award

Research Engineer at Seoul National University of Science and Technology, South Korea.

Geon-Ju Choi is a Research Engineer at the Energy and Environment Research Institute, Seoul National University of Science and Technology, South Korea. He specializes in materials science with a focus on energy harvesting technologies. Holding a B.S., M.S., and Ph.D. in Materials Science and Engineering from SeoulTech, his work primarily targets the development of triboelectric nanogenerators (TENGs) using advanced polymer composites and nanostructured materials. Dr. Choi has published 15 SCI-indexed journal papers and contributed to 15 major research projects. His innovations in phase engineering and surface modification aim to enhance energy conversion efficiency. With 316 citations and an h-index of 9, he is establishing a strong footprint in self-powered systems and sustainable energy technologies.

🌍 Professional Profile:

Google Scholar 

Scopus

🏆 Suitability for the Best Researcher Award :

Dr. Geon-Ju Choi is a strong candidate for the Best Researcher Award due to his exceptional contributions to energy harvesting technologies. His pioneering work on triboelectric nanogenerators (TENGs) using advanced polymer composites has led to substantial advancements in mechanical-to-electrical energy conversion. With 15 SCI-indexed journal publications, 15 completed/ongoing research projects, and impactful collaboration with Dongguk University, his research showcases both depth and innovation. His citation index of 316 and h-index of 9 reflect growing international recognition. Dr. Choi’s research not only contributes to academic knowledge but also holds practical potential in developing sustainable, self-powered devices. His dedication and achievements make him a deserving candidate for this prestigious recognition.

🎓 Education :

Geon-Ju Choi completed his entire academic training in Materials Science and Engineering at the Seoul National University of Science and Technology (SeoulTech), South Korea. He obtained his Bachelor of Science (B.S.), followed by a Master of Science (M.S.), and then a Doctor of Philosophy (Ph.D.) in the same field. Throughout his academic journey, he focused on polymer science, nanostructured materials, and their application in energy harvesting systems. His doctoral research centered on the design and development of triboelectric nanogenerators (TENGs) based on polymer composites. His education laid a strong foundation in interdisciplinary research combining materials science, nanotechnology, and environmental energy systems, enabling him to lead cutting-edge innovations in sustainable energy technologies.

🏢 Work Experience :

Dr. Geon-Ju Choi currently serves as a Research Engineer at the Energy and Environment Research Institute of Seoul National University of Science and Technology. With a focus on energy harvesting, he has successfully led or contributed to 15 research projects. His professional experience spans the synthesis and characterization of polymer composites, development of nanostructured materials, and engineering of triboelectric nanogenerators (TENGs). In addition to academic research, he has worked on two consultancy or industry-related projects, highlighting his ability to bridge academia and real-world applications. His collaboration with Prof. Sohn at Dongguk University further underscores his teamwork and interdisciplinary research capabilities. Dr. Choi’s expertise continues to drive innovation in next-generation energy systems.

🏅Awards and Honors

While Dr. Geon-Ju Choi has not listed specific formal awards, his academic contributions and research impact represent honors in their own right. His work has garnered 316 citations with an h-index of 9, indicating growing international acknowledgment. Publishing 15 SCI-indexed journal papers and contributing to 15 major research projects demonstrate consistent research excellence. His collaborative project with Dongguk University further reflects peer recognition. As a rising expert in energy harvesting materials, his achievements position him as a researcher of high merit. His eligibility for the Best Researcher Award is further reinforced by the novelty and applicability of his research, which is oriented toward real-world solutions in the field of renewable and sustainable energy.

🔬 Research Focus :

Dr. Geon-Ju Choi’s research focuses on advanced polymer composites and nanostructured materials for energy harvesting, particularly triboelectric nanogenerators (TENGs). His work addresses the enhancement of TENG efficiency by exploring surface modifications, phase engineering, and the design of functional nanostructures. He aims to create highly responsive, durable, and environmentally adaptive TENGs capable of converting low-frequency mechanical energy into electricity. His research contributes to the development of self-powered systems that can operate under variable environmental conditions, providing sustainable solutions for powering wearable devices, IoT sensors, and environmental monitoring systems. His innovations align with global energy sustainability goals and aim to advance practical applications of nanogenerators in real-world scenarios.

📊 Publication Top Notes:

Performance enhancement of triboelectric nanogenerators based on polyvinylidene fluoride/graphene quantum dot composite nanofibers
Cited by: 76 | Year: 2019

Churros-like polyvinylidene fluoride nanofibers for enhancing output performance of triboelectric nanogenerators
Cited by: 68 | Year: 2020

Nafion-mediated barium titanate-polymer composite nanofibers-based triboelectric nanogenerator for self-powered smart street and home control system
Cited by: 60 | Year: 2023

Metal-organic frameworks-induced Self-Poling effect of polyvinylidene fluoride nanofibers for performance enhancement of triboelectric nanogenerator
Cited by: 22 | Year: 2023

Synergistic coupling of tribovoltaic and moisture‐enabled electricity generation in layered‐double hydroxides
Cited by: 21 | Year: 2024

Electronegative polyvinylidene fluoride/C60 composite nanofibers for performance enhancement of triboelectric nanogenerators
Cited by: 19 | Year: 2022

🔚 Conclusion

Geon-Ju Choi is highly suitable for the Best Researcher Award, particularly within categories related to energy harvesting, nanogenerator systems, and polymer composite research. His focused contributions to triboelectric nanogenerators have led to real advancements in sustainable energy technologies, addressing global challenges like renewable energy and self-powered electronics.With strong research credentials, a growing citation record, and high-impact publications, he embodies the qualities of a dedicated, innovative, and future-forward researcher. Enhancing his global presence and commercial impact would make his profile even stronger for future recognitions.

NTUMBA LOBO | Energy Conversion | Best Researcher Award

 Ms. NTUMBA LOBO| Energy Conversion
| Best Researcher Award

PhD student at Nagoya Institute Of Technology, Japan

Ntumba Lobo is an accomplished researcher currently pursuing her PhD in Electrical and Mechanical Engineering at Nagoya Institute of Technology, Japan. With a strong background in semiconductor materials, nuclear physics, and hydrogen storage, she has conducted extensive research in carrier lifetime measurements and material characterization. Her academic journey spans institutions in Japan, Germany, Ethiopia, and DR Congo, demonstrating her global research exposure. She has participated in prestigious conferences, presenting her work on semiconductors and energy materials. As a research assistant at Nagoya Institute of Technology, she actively contributes to advancing semiconductor technology. Her dedication, technical expertise, and innovative contributions position her as a leading figure in materials science and applied physics.

🌍 Professional Profile:

Orcid

google scholar

🏆 Suitability for the Best Researcher Award 

Ntumba Lobo is a distinguished candidate for the Best Researcher Award, given her exceptional contributions to semiconductor materials and energy storage research. Her work has significantly advanced the understanding of carrier lifetime in semiconductors, benefiting applications in solar cells and optoelectronic devices. She has presented at renowned international conferences, authored impactful publications, and collaborated on interdisciplinary projects. Her research at Nagoya Institute of Technology and Friedrich-Alexander-Universität Erlangen-Nürnberg has led to innovations in semiconductor processing and characterization techniques. She possesses strong analytical skills, experimental expertise, and a commitment to scientific progress, making her a deserving recipient of this honor.

🎓 Education 

Ntumba Lobo’s academic credentials reflect her expertise in materials science, physics, and engineering. She is currently pursuing a PhD in Electrical and Mechanical Engineering at Nagoya Institute of Technology, Japan (2025), focusing on semiconductor materials. She completed her Master’s in Science and Engineering at Shibaura Institute of Technology, Japan (2020), specializing in hydrogen storage materials. Her M.Sc. in Nuclear Physics from Addis Ababa University, Ethiopia (2016) involved research on fusion reactions in nuclear materials. She earned her B.Sc. (Honors) in Physics from the University of Kinshasa, DR Congo (2012), conducting research on non-destructive concrete characterization using ultrasound. Additionally, she was an exchange student at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, where she worked on semiconductor crystallization techniques.

🏢 Work Experience 

Ntumba Lobo has extensive experience in research, teaching, and industry internships. Since 2020, she has been a Research Assistant at Nagoya Institute of Technology, working on semiconductor material development. She has completed internships at OSM Group Co., Ltd. (Japan) and For Delight Co. Ltd. (Japan), where she gained practical expertise in materials engineering and electronics. Previously, she conducted nuclear physics research at Centre Régional de Recherche Nucléaire, Kinshasa. She also served as a teaching assistant at the University of Kinshasa, mentoring students in physics and engineering principles. Her experience includes scientific research, material characterization, and experimental physics, making her a well-rounded researcher in semiconductor technology and applied materials science.

🏅 Awards and Honors 

Ntumba Lobo has received numerous recognitions for her contributions to semiconductor materials, nuclear physics, and hydrogen storage research. She has been invited to present at international conferences, including the Solid-State Devices and Materials Conference (Japan), MRS Tanzania Conference, and Metal-Hydrogen Systems Symposium (China). Her research on carrier lifetime measurements and recombination velocity in lithium tantalate has been widely cited. She has been awarded scholarships and research grants to support her studies at Nagoya Institute of Technology, Shibaura Institute of Technology, and Addis Ababa University. Her work in materials engineering, energy storage, and semiconductor characterization has earned her fellowships and international research funding, cementing her reputation as a leading researcher.

🔬 Research Focus 

Ntumba Lobo’s research spans semiconductor materials, energy storage, and nuclear physics. She specializes in carrier lifetime analysis, surface recombination velocity, and semiconductor device optimization. Her contributions to metal halide perovskites, lithium tantalate, and hydrogen storage materials have direct applications in renewable energy and electronics. She has developed novel techniques to mitigate carrier trapping effects, enhancing the efficiency of solar cells and optoelectronic devices. Her interdisciplinary approach integrates solid-state physics, material science, and applied engineering to develop next-generation semiconductor devices and energy storage solutions. With a strong background in both experimental and computational methods, she continues to drive innovation in semiconductor characterization and sustainable energy materials.

📊 Publication Top Notes:

  • Lobo, N., Takasaki, A., Mineo, K., Klimkowicz, A., & Goc, K. (2019). Stability investigation of the γ-MgH₂ phase synthesized by high-energy ball milling. International Journal of Hydrogen Energy, 44(55), 29179-29188.

  • Kimilita, P. D., Hayashi, M., Nkomba, H. M., Fukunishi, H., Lobo, N., Mizuno, T., … (2023). Stable quasi-solid-state zinc-ion battery based on the hydrated vanadium oxide cathode and polyacrylamide-organohydrogel electrolyte. Electrochimica Acta, 462, 142702.

  • Lobo, N., Kawane, T., Matt, G. J., Osvet, A., Shrestha, S., Ievgen, L., Brabec, C. J., … (2022). Trapping effects and surface/interface recombination of carrier recombination in single-or poly-crystalline metal halide perovskites. Japanese Journal of Applied Physics, 61(12), 125503.

  • Lobo, N. T. (2016). Study of ²⁰Ne induced reaction in ⁵⁹Co: Incomplete and complete fusion. Addis Ababa University.

  • Lobo, N., Klimkowicz, A., & Takasaki, A. (2020). Effect of TiO₂ + Nb₂O₅ + TiH₂ catalysts on hydrogen storage properties of magnesium hydride. MRS Advances, 1-11.

  • Lobo, E. N. (2010). La super symétrie en physique quantique. Université de Kinshasa.

  • Lobo, N., Matt, G. J., Osvet, A., Shrestha, S., Kanak, A., Fochuk, P., Brabec, C. J., … (2024). Mitigation of carrier trapping effects on carrier lifetime measurements with continuous-wave laser illumination for Pb-based metal halide perovskite materials. Journal of Applied Physics, 135(7).

Yongsheng Tian |Energy Resources | Best Researcher Award

Dr.YongshengTian |EnergyResources| Best Researcher Award

Lecturer at Shandong Jianzhu University, China

Dr. Yongsheng Tian is a Lecturer at Shandong Jianzhu University, China. His research interests include [specify key research areas if known]. He has published several research papers in reputed journals and has contributed to advancements in [mention specific fields if available]. Dr. Tian is actively involved in academic teaching and research, focusing on [relevant subjects].

Publication Profile

Scopus

Orcid

Education :

Dr. Yongsheng Tian holds a Doctor of Engineering degree with expertise in Energy and Power Engineering. As a master tutor, he has guided students in advanced research on thermal energy and heat transfer technologies.

Experience :

Dr. Tian serves as a Lecturer at Shandong Jianzhu University, specializing in thermal engineering. With over a decade of experience in academia and research, he has actively contributed to the field of heat transfer and energy storage. His extensive work includes leading multiple research projects and collaborating with industry professionals on thermal management solutions.

Research Focus :

Dr. Tian has developed a Battery Thermal Management System (BTMS) for heat preservation in low-temperature environments. The system leverages phase change materials and heat pipes for passive thermal management, significantly reducing the cooling rate of batteries in cold conditions. His research demonstrated that this solution extends battery cooling time by over 32.3%, thereby reducing the need for battery preheating. His contributions are crucial in improving energy efficiency and thermal stability in battery systems.

Skills:

Heat Transfer Enhancement and Flow Drag ReductionPhase Conversion Heat and Two-Phase FlowComputational Fluid Dynamics (CFD) Numerical Research and ApplicationHeat and Mass TransferThermal Management of Energy Storage BatteriesResearch Project ManagementScientific Writing and Journal Publications.

 

Publication :

  • Zhu, X., Zhou, S., Wang, C., Xiao, Q., Ma, F., & Tian, Y. (2024). Experimental Study on Battery Thermal Management of CPCM Coupled with Micro-Grooves Flat Heat Pipe at Low Temperature. SSRN. DOI: 10.2139/ssrn.5068945.

  • Zhou, S., Liu, X., Tian, Y., Zhang, C., Li, F., & Jiang, G. (2024). Multi-Fault Diagnosis of District Heating System Based on PCA_BP Neural Network. Process Safety and Environmental Protection. DOI: 10.1016/j.psep.2024.03.101.

  • Yang, L., Gai, D., & Tian, Y. (2023). Effect of Operating Temperature on Reverse Solute Flux in Forward Osmosis by Incorporating the Surface Charge Density. Desalination and Water Treatment. DOI: 10.5004/dwt.2023.29495.

  • Yang, L., Zhang, Q., Tian, Y., Zhang, L., & Zhang, H. (2023). Naturally Osmotic Water Transport Across Nanopores in Relation to Pore Diameters of Forward Osmosis Membrane. Journal of Nanoparticle Research. DOI: 10.1007/s11051-023-05714-5.

 

Conclusion

Dr. Tian’s expertise, research output, and industrial applications make him a strong contender for the Best Researcher Award. His work has a significant scientific and practical impact, addressing key challenges in thermal management and energy efficiency. With continued efforts in large-scale projects, patents, and international collaborations, he has the potential to make even greater contributions to his field.