Qihui Yu | Renewable Energy | Best Researcher Award

Mr. Qihui Yu | Renewable Energy
| Best Researcher Award

Department Head at Inner Mongolia University of Science & Technology, China.

Dr. Qihui Yu is an accomplished associate professor at Inner Mongolia University of Science and Technology, with a Ph.D. in Mechatronic Engineering from Beihang University. Specializing in compressed air energy storage and energy-efficient pneumatic systems, he brings over a decade of academic and postdoctoral research expertise. His innovative work integrates thermal and fluid power systems to address energy efficiency challenges. He has served as a visiting scholar at the University of Nottingham, strengthening international collaboration. Dr. Yu has led a National Natural Science Foundation of China (NSFC) project, showcasing his leadership in high-impact research. His technical excellence and commitment to sustainable energy systems make him highly suitable for the Best Researcher Award, recognizing innovation, dedication, and significant contributions to his field.

Professional Profile :

Scopus

Suitability for the Best Researcher Award :

Dr. Qihui Yu is highly suitable for the Best Researcher Award due to his significant contributions to the fields of compressed air energy storage, pneumatic system optimization, and thermal energy management. With a Ph.D. from Beihang University and postdoctoral experience in automation and fluid power systems, he has led impactful research at Inner Mongolia University of Science and Technology. His leadership in a National Natural Science Foundation of China project demonstrates national recognition and technical excellence. Dr. Yu’s international academic collaboration as a visiting scholar at the University of Nottingham, coupled with a strong publication record, underscores his innovative work and global research relevance. His work aligns with sustainable energy goals, making him a deserving candidate for this prestigious award.

Education :

Dr. Qihui Yu pursued his academic journey in mechanical and mechatronic engineering across top Chinese institutions. He earned his Ph.D. in Mechatronic Engineering (Fluid Power Drive and Control) from Beihang University (BUAA) between 2010 and 2015, where he focused on advanced energy systems. Prior to that, he completed his master’s degree in Mechanical Electronic Engineering at Zhengzhou University (2007–2010). His undergraduate education in Mechanical Engineering and Automation was obtained from Henan University of Science and Technology (2003–2007). Throughout his education, Dr. Yu developed a strong foundation in fluid dynamics, automation, and thermal energy, laying the groundwork for his future contributions to energy-saving pneumatic and heat storage systems.

Work Experience :

Dr. Qihui Yu is currently an associate professor at Inner Mongolia University of Science and Technology, a position he has held since 2018, following his earlier role as a lecturer (2016–2018). He also spent a year (2021–2022) as a visiting scholar at the University of Nottingham, UK, enhancing his international research exposure. From 2014 to 2016, he served as a postdoctoral fellow at Beihang University’s School of Automation Science and Electrical Engineering. His diverse roles in academia, research, and international collaboration reflect a career dedicated to the advancement of energy storage and fluid power technologies. His trajectory highlights both technical leadership and consistent growth in academic responsibility and recognition.

Awards and Honors

Dr. Qihui Yu has earned recognition for his contributions to energy systems and engineering innovation. While specific award titles are not listed, his selection as a project leader for the National Natural Science Foundation of China (NSFC) underscores his standing in the academic and engineering research community. His appointment as a visiting scholar at the University of Nottingham further signifies his scholarly impact and collaborative value. His progressive academic promotions—from lecturer to associate professor—also reflect institutional acknowledgment of his research performance and teaching excellence. Dr. Yu’s track record and leadership in high-value research initiatives affirm his eligibility for esteemed awards such as the Best Researcher Award, celebrating sustained achievement and future promise.

 Research Focus :

Dr. Qihui Yu’s research is centered on compressed air energy storage (CAES), pneumatic energy-saving systems, and heat storage technology. He explores the thermodynamic behavior of gas-liquid interactions and energy optimization under variable spatial constraints. As principal investigator of a NSFC project (52465008), he investigates quasi-isothermal CAES processes to improve system efficiency. His work bridges theory and application, enhancing the performance and sustainability of modern energy storage solutions. With a strong focus on renewable and efficient energy systems, Dr. Yu contributes to national strategies for green technology development. His research has broad implications for industries seeking low-carbon solutions and positions him as a key innovator in mechanical and energy engineering.

 Publication Top Notes:
  • Water spray heat transfer gas compression for compressed air energy system, 2021 

  • Compressed air energy storage capacity configuration and economic evaluation considering the uncertainty of wind energy, 2022 

  • Experimental and performance study of spray heat transfer‑based compressed air quasi‑isothermal expansion system, 2023 

  • Performance analysis of an innovative kind of two‑stage piston type expansion air engine, 2018

  • Comparative study on air distribution system for piston‑type compressed air engine, 2017

  • Fuzzy logic speed control for the engine of an air‑powered vehicle, 2016

  • Optimization study on a single‑cylinder compressed air engine, 2015 

  • A review of compressed‑air energy storage, 2019 — Citations: ~61

Conclusion

Dr. Qihui Yu stands out as a highly promising and accomplished mid-career researcher with a strong focus on sustainable energy systems. His technical contributions, national project leadership, and international exposure make him a very suitable candidate for the Best Researcher Award. With continued emphasis on global outreach, industrial impact, and academic leadership, he is well-positioned to become a leading authority in mechanical energy systems and thermal storage technologies.

Geon-Ju Choi | Energy Harvesting | Best Researcher Award

Dr. Geon-Ju Choi | Energy Harvesting
| Best Researcher Award

Research Engineer at Seoul National University of Science and Technology, South Korea.

Geon-Ju Choi is a Research Engineer at the Energy and Environment Research Institute, Seoul National University of Science and Technology, South Korea. He specializes in materials science with a focus on energy harvesting technologies. Holding a B.S., M.S., and Ph.D. in Materials Science and Engineering from SeoulTech, his work primarily targets the development of triboelectric nanogenerators (TENGs) using advanced polymer composites and nanostructured materials. Dr. Choi has published 15 SCI-indexed journal papers and contributed to 15 major research projects. His innovations in phase engineering and surface modification aim to enhance energy conversion efficiency. With 316 citations and an h-index of 9, he is establishing a strong footprint in self-powered systems and sustainable energy technologies.

🌍 Professional Profile:

Google Scholar 

Scopus

🏆 Suitability for the Best Researcher Award :

Dr. Geon-Ju Choi is a strong candidate for the Best Researcher Award due to his exceptional contributions to energy harvesting technologies. His pioneering work on triboelectric nanogenerators (TENGs) using advanced polymer composites has led to substantial advancements in mechanical-to-electrical energy conversion. With 15 SCI-indexed journal publications, 15 completed/ongoing research projects, and impactful collaboration with Dongguk University, his research showcases both depth and innovation. His citation index of 316 and h-index of 9 reflect growing international recognition. Dr. Choi’s research not only contributes to academic knowledge but also holds practical potential in developing sustainable, self-powered devices. His dedication and achievements make him a deserving candidate for this prestigious recognition.

🎓 Education :

Geon-Ju Choi completed his entire academic training in Materials Science and Engineering at the Seoul National University of Science and Technology (SeoulTech), South Korea. He obtained his Bachelor of Science (B.S.), followed by a Master of Science (M.S.), and then a Doctor of Philosophy (Ph.D.) in the same field. Throughout his academic journey, he focused on polymer science, nanostructured materials, and their application in energy harvesting systems. His doctoral research centered on the design and development of triboelectric nanogenerators (TENGs) based on polymer composites. His education laid a strong foundation in interdisciplinary research combining materials science, nanotechnology, and environmental energy systems, enabling him to lead cutting-edge innovations in sustainable energy technologies.

🏢 Work Experience :

Dr. Geon-Ju Choi currently serves as a Research Engineer at the Energy and Environment Research Institute of Seoul National University of Science and Technology. With a focus on energy harvesting, he has successfully led or contributed to 15 research projects. His professional experience spans the synthesis and characterization of polymer composites, development of nanostructured materials, and engineering of triboelectric nanogenerators (TENGs). In addition to academic research, he has worked on two consultancy or industry-related projects, highlighting his ability to bridge academia and real-world applications. His collaboration with Prof. Sohn at Dongguk University further underscores his teamwork and interdisciplinary research capabilities. Dr. Choi’s expertise continues to drive innovation in next-generation energy systems.

🏅Awards and Honors

While Dr. Geon-Ju Choi has not listed specific formal awards, his academic contributions and research impact represent honors in their own right. His work has garnered 316 citations with an h-index of 9, indicating growing international acknowledgment. Publishing 15 SCI-indexed journal papers and contributing to 15 major research projects demonstrate consistent research excellence. His collaborative project with Dongguk University further reflects peer recognition. As a rising expert in energy harvesting materials, his achievements position him as a researcher of high merit. His eligibility for the Best Researcher Award is further reinforced by the novelty and applicability of his research, which is oriented toward real-world solutions in the field of renewable and sustainable energy.

🔬 Research Focus :

Dr. Geon-Ju Choi’s research focuses on advanced polymer composites and nanostructured materials for energy harvesting, particularly triboelectric nanogenerators (TENGs). His work addresses the enhancement of TENG efficiency by exploring surface modifications, phase engineering, and the design of functional nanostructures. He aims to create highly responsive, durable, and environmentally adaptive TENGs capable of converting low-frequency mechanical energy into electricity. His research contributes to the development of self-powered systems that can operate under variable environmental conditions, providing sustainable solutions for powering wearable devices, IoT sensors, and environmental monitoring systems. His innovations align with global energy sustainability goals and aim to advance practical applications of nanogenerators in real-world scenarios.

📊 Publication Top Notes:

Performance enhancement of triboelectric nanogenerators based on polyvinylidene fluoride/graphene quantum dot composite nanofibers
Cited by: 76 | Year: 2019

Churros-like polyvinylidene fluoride nanofibers for enhancing output performance of triboelectric nanogenerators
Cited by: 68 | Year: 2020

Nafion-mediated barium titanate-polymer composite nanofibers-based triboelectric nanogenerator for self-powered smart street and home control system
Cited by: 60 | Year: 2023

Metal-organic frameworks-induced Self-Poling effect of polyvinylidene fluoride nanofibers for performance enhancement of triboelectric nanogenerator
Cited by: 22 | Year: 2023

Synergistic coupling of tribovoltaic and moisture‐enabled electricity generation in layered‐double hydroxides
Cited by: 21 | Year: 2024

Electronegative polyvinylidene fluoride/C60 composite nanofibers for performance enhancement of triboelectric nanogenerators
Cited by: 19 | Year: 2022

🔚 Conclusion

Geon-Ju Choi is highly suitable for the Best Researcher Award, particularly within categories related to energy harvesting, nanogenerator systems, and polymer composite research. His focused contributions to triboelectric nanogenerators have led to real advancements in sustainable energy technologies, addressing global challenges like renewable energy and self-powered electronics.With strong research credentials, a growing citation record, and high-impact publications, he embodies the qualities of a dedicated, innovative, and future-forward researcher. Enhancing his global presence and commercial impact would make his profile even stronger for future recognitions.

Md. Monjarul Alam | Green Technology | Best Researcher Award

Prof. Md. Monjarul Alam | Green Technology
| Best Researcher Award

ICE Chancellor at Hamdard University Bangladesh, Bangladesh.

Dr. Monjarul Alam is the Vice-Chancellor of Hamdard University Bangladesh and a distinguished researcher in nanomaterials, biosensors, and electronic engineering. He earned his Ph.D. in Electronic Engineering from Dublin City University, Ireland, and completed a prestigious postdoctoral fellowship at City, University of London, UK. With extensive teaching, research, and leadership experience, Dr. Alam has led several government-funded research projects and authored numerous scholarly articles. His commitment to academic excellence and innovation in nanotechnology and photonics has significantly contributed to science and education in Bangladesh. Recognized with national and international awards, he exemplifies excellence in research leadership. His academic journey and impactful contributions make him highly suitable for the Best Researcher Award.

🌍 Professional Profile:

ORCID

Scopus

Google Scholar 

🏆 Suitability for the Best Researcher Award :

Dr. Monjarul Alam’s profound research in nanomaterials, biosensing, and thin-film electronics positions him as an ideal candidate for the Best Researcher Award. His postdoctoral work in nanophotonics, Ph.D. on nanomaterials processing, and multiple government-funded projects on biosynthesis of nanoparticles for medical and sensor applications showcase a robust research portfolio. Dr. Alam has demonstrated academic leadership through his role as Vice-Chancellor, while also securing major research grants and publishing impactful findings. His awards, including an Ireland Government Scholarship and national-level presentation accolades, highlight his excellence and global recognition. With a strong record of interdisciplinary innovation and sustained academic output, Dr. Alam embodies the values of research excellence, innovation, and societal impact.

🎓 Education :

Dr. Alam holds a Ph.D. in Electronic Engineering with a specialization in nanomaterials and photonics from Dublin City University, Ireland, supported by an Ireland Government Scholarship. He completed a postdoctoral research program at City, University of London in Mechanical Engineering and Aeronautics. His earlier education includes an M.Phil. and an M.Sc. (with thesis) in Electrical and Electronic Engineering from the Islamic University, Kushtia, Bangladesh, both delivered in English. He earned a First Class B.Sc. in Electrical and Electronic Engineering from the same institution. Dr. Alam began his academic journey with top results in both SSC and HSC examinations under the Jessore Board. His rigorous academic foundation underpins his expertise in advanced materials and engineering research.

🏢 Work Experience :

Dr. Monjarul Alam serves as the Vice-Chancellor of Hamdard University Bangladesh, bringing over two decades of experience in academic leadership, research, and engineering education. He previously held positions at Islamic University, Kushtia, contributing significantly to research in nanotechnology and electronics. Dr. Alam has led national research projects funded by the Ministry of Science and Technology and University Grants Commission in Bangladesh. His research includes biosynthesis of nanoparticles, thin film synthesis, and biomedical applications. His postdoctoral research at City, University of London and doctoral work in Ireland enhanced his international academic exposure. Dr. Alam has mentored numerous students, published widely, and advanced institutional research capabilities, combining scholarly excellence with visionary administration.

🏅Awards and Honors

Dr. Alam has received several prestigious awards and fellowships throughout his academic career. These include the Ireland Government Scholarship for his Ph.D. studies in nanomaterials and the Ministry of Science and ICT Fellowship in Bangladesh for his M.Phil. His undergraduate achievements were recognized by the Bangladesh Government Higher Education Authority through a merit-based stipend. Additionally, Dr. Alam earned an Oral Presentation Award at the Faculty of Engineering and Computing, Dublin City University. His consistent recognition by national and international bodies reflects the impact and quality of his research. His awarded research projects on biosynthesis of nanoparticles further signify his contribution to scientific innovation and development in applied nanotechnology.

🔬 Research Focus :

Dr. Alam’s research is focused on nanotechnology, specifically the green biosynthesis of nanoparticles for biomedical and sensor applications. His projects investigate silver, copper oxide, and tin oxide nanoparticles, leveraging natural plant extracts for environmentally sustainable synthesis. His work spans thin-film technology, antibacterial coatings, gas sensors, and optoelectronic devices. Dr. Alam emphasizes the interface between nanophotonics, biocompatible materials, and electronic engineering to develop innovative solutions for healthcare and environmental monitoring. His interdisciplinary research integrates materials science, electronics, and biotechnology, aiming to produce cost-effective, high-performance materials. Through collaborations and national research grants, he is advancing the field of functional nanomaterials, contributing both to fundamental science and applied technologies in Bangladesh and beyond.

📊 Publication Top Notes:

🔬 Synthesis and characterization of barium titanate (BaTiO₃) nanoparticle
📅 Year: 2012 | 📑 Cited by: 65

🧵 Plasma treatment of natural jute fibre by RIE 80 plus plasma tool
📅 Year: 2010 | 📑 Cited by: 58

🪡 Application and Advances in Micro-Processing of Natural Fibre (Jute) Based Composites
📅 Year: 2014 | 📑 Cited by: 51

🧪 Numerical simulation of Dean number and curvature effects on magneto-biofluid flow through a curved conduit
📅 Year: 2013 | 📑 Cited by: 47

⚗️ Synthesis and characterization of Ni doped ZnO nanoparticles
📅 Year: 2014 | 📑 Cited by: 30

💧 Moisture Removal from Natural Jute Fibre by Plasma Drying Process
📅 Year: 2012 | 📑 Cited by: 24

🔋 Hybrid organic–inorganic spin-on-glass CuCl films for optoelectronic applications
📅 Year: 2009 | 📑 Cited by: 22

🏺 Effects of sintering temperature and zirconia content on the mechanical and microstructural properties of MgO, TiO₂ and CeO₂ doped alumina–zirconia (ZTA)
📅 Year: 2023 | 📑 Cited by: 18

Yang Li | Electrical Engineering | Best Researcher Award

Assoc. Prof. Dr. Yang Li | Electrical Engineering
| Best Researcher Award

Director at Forensic Science Institute China People’s Police University, China.

Dr. Li Yang is an Associate Professor at the China People’s Police University, specializing in electrical fire investigation and forensic evidence analysis. With a Ph.D. in Safety Science and Engineering from Xi’an University of Science and Technology and extensive research on arc faults, short-circuit initiation, and pyrolysis gas analysis, he has become a leading voice in electrical fire forensics. He serves on the Committee on Electrical Fire Safety of the China Fire Association and has led multiple national and provincial projects. Recognized as a Distinguished Teacher of Hebei Province in 2022, his contributions have significantly enhanced fire evidence identification technologies. He has also played a pivotal role in national training programs and technical innovations for fire investigators.

🌍 Professional Profile:

Scopus

🏆 Suitability for the Best Researcher Award :

Dr. Li Yang is a strong candidate for the Best Researcher Award due to his pioneering work in electrical fire investigation. His research advances the forensic science field through the development of intelligent identification technologies and fault simulation devices. He has been instrumental in leading key national and provincial projects, authoring technical patents, and contributing to cutting-edge publications. His academic leadership, combined with practical innovation, addresses critical safety concerns in fire investigation. Recognition by both academic institutions and the Ministry of Public Security underscores his impact. His ability to integrate science, engineering, and real-world application makes him not only a productive researcher but a transformative force in safety science.

🎓 Education :

Li Yang holds a Doctor of Philosophy in Safety Science and Engineering from Xi’an University of Science and Technology (2018–2022). Prior to that, he earned a Master of Science in Materials Science (2008–2011) and a Bachelor of Science in Fire Investigation (2004–2008), both from the China People’s Police University. His interdisciplinary educational background has equipped him with a solid foundation in forensic materials, fire safety engineering, and investigative techniques. This strong academic progression supports his current research and teaching in the field of electrical fire forensics and contributes to the training of future safety professionals in law enforcement and public safety sectors.

🏢 Work Experience :

Dr. Li Yang has served in various academic positions at the China People’s Police University since 2014. Currently an Associate Professor in the Investigation College (since 2020), he previously held positions in the Department of Fire Engineering. Over the years, he has been deeply involved in curriculum development, investigator training, and research supervision. His expertise has also been sought by national bodies such as the Ministry of Public Security, where he serves as a fire-related case investigation expert. He has combined teaching excellence with project leadership across government-funded and institutional research. His dual role as educator and researcher enables him to bridge academic knowledge with field application effectively.

🏅 Awards and Honors :

Dr. Li Yang has received numerous accolades for his contributions. Notably, he was honored as a Distinguished Teacher of Hebei Province in 2022 and selected as a Fire Investigation Expert by the Criminal Investigation Bureau of the Ministry of Public Security in 2020. He is a Committee Member on Electrical Fire Safety with the China Fire Association. His research earned the Third Prize from the Ministry of Public Security Science and Technology Award in 2019. These awards reflect both his academic excellence and societal impact. Through these honors, Dr. Yang has been recognized for his research leadership, technological innovation, and dedication to advancing fire safety practices across China.

🔬 Research Focus :

Dr. Li Yang’s research centers on electrical fire forensics, particularly the mechanisms behind short-circuit faults, arc-related ignition, and trace identification. He applies cutting-edge tools such as STA-FTIR-GC/MS to analyze pyrolysis gases from common materials in electrical systems, aiming to establish the forensic links between device failure and fire cause. His studies also examine the behavior of molten droplets, overcurrent wire degradation, and fault inversion modeling under variable environmental conditions. He leads national R&D programs and technical research projects focusing on intelligent identification technologies and early-warning mechanisms. His goal is to enhance fire evidence analysis reliability and improve training and tools for first responders and forensic investigators in China.

📊 Publication Top Notes:

🔥 Lin Q‑W, Li X, Li Y, Deng J, Man P‑R, Jia Y‑Z. Comparative investigation on thermo‑oxidative degradation and fire characteristics of flame‑retardant and non‑flame‑retardant polyvinyl chloride wires. Thermal Science and Engineering Progress. 2025;57:103210. • 📄 Cited X times

Lin Q‑W, Li Y, Man P‑R, Jin Y, Lyu H, Wang H, Zhao Y, Su W, Deng J. Effects of applied voltages on the occurrence features of short circuits in building cables exposed to constant radiation heat. Journal of Building Engineering. 2024;98:111038. • 📄 Cited Y times

🧪 Lin Q‑W, Li Y, Deng J, F‑F He, P‑R Man. Thermo‑oxidative degradation behavior of poly(vinyl chloride) insulation for new and overloaded wires via TG‑FTIR. Journal of Applied Polymer Science. 2024;141(39):e55994. • 📄 Cited Z times

🧯 Li Z, Lin Q‑W, Li Y, et al. Effect of the current on the fire characteristics of overloaded polyvinyl chloride copper wires. Polymers. 2022;14(21):4766.* • 📄 Cited A times

🔥 Lin Q‑W, Li Y, Deng J. Formation mechanism and microstructural analysis of blistering marks on overcurrent copper wires. Fire Safety Journal. 2024;150(Pt A):104268. • 📄 Cited B times

Li Y, Sun Y, Gao Y, et al. Analysis of overload‑induced arc formation and bead characteristics in a residential electrical cable. Fire Safety Journal. 2022;131:103626. • 📄 Cited C times

Mahdi Zarnoush | Renewable Energy | Best Researcher Award

Mr. Mahdi Zarnoush | Renewable Energy
| Best Researcher Award

Researcher at K. N. Toosi University of Technology, Iran.

Mahdi Zarnoush is a dedicated researcher in Mechanical Engineering at K. N. Toosi University of Technology, specializing in energy conversion, renewable energy, and energy storage systems. With a strong academic foundation and a passion for sustainable development, he has contributed to over 10 research projects and published four ISI-indexed journal papers, with additional work under review. His innovative research advances efficient and optimized energy solutions, aligning with global energy transition goals. As a journal reviewer and active member of scientific associations, he plays a pivotal role in maintaining academic integrity and excellence. His scholarly contributions and active engagement in the research community make him a compelling candidate for the Best Researcher Award.

🌍 Professional Profile:

ORCID

Scopus

Google scholar 

🏆 Suitability for the Best Researcher Award :

Mahdi Zarnoush exemplifies the qualities of a top-tier researcher through his impactful work in energy conversion and storage technologies. His contributions to the field, including peer-reviewed journal publications and a forthcoming book chapter, demonstrate both depth and innovation. Zarnoush’s research addresses pressing global energy challenges by enhancing energy system efficiency and sustainability. His active involvement in academic collaborations, reviewing duties for respected journals, and leadership in scientific associations highlight his professional maturity and scholarly commitment. These accomplishments, coupled with his drive for excellence in renewable energy and energy transition research, mark him as highly suitable for the Best Researcher Award and position him as a rising leader in sustainable energy solutions.

🎓 Education :

Mahdi Zarnoush holds an M.Sc. in Mechanical Engineering with a specialization in Energy Conversion from K. N. Toosi University of Technology, a premier institution in Iran. He earned his B.Sc. in Mechanical Engineering from the University of Kashan, where he built a strong foundation in thermodynamics, fluid mechanics, and system design. During his graduate studies, Zarnoush focused on advanced energy systems, optimizing energy conversion processes and exploring renewable technologies. His academic path was marked by a commitment to research, sustainability, and innovation, enabling him to contribute meaningfully to both theoretical and applied aspects of energy engineering. His educational background provides the technical depth and scientific rigor necessary for impactful contributions in academia and industry alike.

🏢 Work Experience :

Mahdi Zarnoush is currently a Research Associate at K. N. Toosi University of Technology, where he has led and contributed to over ten academic research projects in energy systems and sustainable technologies. His expertise spans energy conversion, renewable integration, and energy storage modeling. Zarnoush has also served as a reviewer for reputable journals, such as the Journal of Energy Storage, reflecting peer recognition of his analytical skills and subject expertise. He collaborates with leading researchers on energy optimization projects and contributes regularly to the university’s Mechanical Engineering Scientific Association. His experience blends rigorous research with practical insight, advancing the development of efficient energy systems and contributing to the knowledge base in clean energy transitions.

🏅 Awards and Honors :

While formal awards are not currently listed, Mahdi Zarnoush’s academic recognition is reflected in his publication record, peer review contributions, and active involvement in leading research initiatives. His four published ISI-indexed journal papers and two under-review manuscripts have garnered increasing citations, indicating growing impact. His selection as a reviewer for high-impact journals like the Journal of Energy Storage speaks to his credibility and expertise in the field. Zarnoush’s participation in multiple high-level academic projects and his contribution to an upcoming book chapter further demonstrate his recognized value in the research community. His work continues to receive acknowledgment through scholarly collaboration, invitations for academic contributions, and consistent involvement in scientific development platforms.

🔬 Research Focus :

Mahdi Zarnoush’s research is centered on the development of advanced, sustainable, and efficient energy systems. His key areas include energy conversion technologies, renewable energy integration, energy transition strategies, and storage systems. He emphasizes optimization and modeling of thermal and hybrid energy systems to improve reliability and reduce environmental impact. Zarnoush’s work bridges theory and application, targeting real-world solutions to pressing energy issues. He explores innovations in smart energy systems and sustainable infrastructure, with a commitment to facilitating the global shift toward clean energy. Through academic publications, ongoing research projects, and cross-disciplinary collaborations, he aims to contribute foundational knowledge and practical tools that accelerate progress in the fields of renewable energy and sustainable technology.

📊 Publication Top Notes:

📘 Comparative evaluation of advanced adiabatic compressed gas energy storage systems
📅 Year: 2023 | 📊 Cited by: 43 | 📰 Journal of Energy Storage

📘 Comparative investigation for sustainable freshwater production in hybrid multigrid systems based on solar energy
📅 Year: 2024 | 📊 Cited by: 11 | 📰 Journal of Cleaner Production

📘 Integration of Emerging Technologies in Next-Generation Electric Vehicles: Evolution, Advancements, and Regulatory Prospects
📅 Year: 2025 | 📊 Cited by: 8 | 📰 Results in Engineering

📘 Comprehensive examination of a green hybrid biomass-integrated compressed air energy storage system with PEM hydrogen production across various operating modes
📅 Year: 2025 | 📊 Cited by: 2 | 📰 Journal of Energy Storage

G.N.Lalith Pankaj Raj Nadimuthu | Renewable Energy | Best Researcher Award

Dr. G.N.Lalith Pankaj Raj Nadimuthu | RenewableEnergy
|Best Researcher Award

 

Faculty at The Gandhigram Rural Institute – Deemed to be University ,India.

Dr. G.N. Lalith Pankaj Raj, a dedicated scholar in Energy Engineering, is a DST INSPIRE Fellow with exceptional contributions to renewable energy research. With over 260 citations, an h-index of 10, and 11 indexed publications, his impactful work in solar photovoltaics, electric mobility, and smart grid technology demonstrates academic excellence and real-world relevance. His interdisciplinary approach, field innovations, and gold-medal academic record make him a strong contender for the Best Researcher Award. His research aligns with national sustainability goals, especially in rural energy solutions. He consistently merges theory with application, helping to shape energy policy and empower rural communities through technology. His dedication to innovation and sustainability exemplifies the highest standards of academic research.


🌍 Professional Profile:

Orcid

Google scholar

🏆 Suitability for the Best Researcher Award

 

 

Dr. G.N. Lalith Pankaj Raj, B.E., M.Tech., Ph.D., is a distinguished DST INSPIRE Fellow with an exceptional academic and research profile in energy engineering. His work focuses on impactful, community-driven innovations such as solar photovoltaic-based cold storage and nano-grids for rural livelihood improvement. With 262 citations, an h-index of 10, and 11 i10-indexed publications, his research demonstrates both quality and real-world applicability. A Gold Medalist and First Rank holder in M.Tech, he blends technical excellence with societal relevance. His dedication to renewable energy, electric mobility, and climate change mitigation through green technologies aligns with national sustainability missions. His contributions make him a strong candidate for the Best Researcher Award, reflecting innovation, impact, and academic leadership.

🎓 Education 

Dr. Lalith Pankaj Raj earned his Ph.D. in Energy Engineering from The Gandhigram Rural Institute (Ministry of Education, GoI), where he was awarded the prestigious DST INSPIRE Fellowship. He completed his M.Tech in Renewable Energy with a stellar CGPA of 9.19, securing the First Rank and Gold Medal. He also holds a Certificate in Energy Auditing with distinction (CGPA 10) from the same institution. His B.E. in Electrical and Electronics Engineering was obtained from PSNA College of Engineering and Technology, affiliated with Anna University, with a CGPA of 7.95. His strong academic foundation is complemented by excellence in pre-university studies, including 89.2% in SSLC. His project work spans energy auditing, photovoltaic thermal systems, and smart vehicle technologies.

🏢 Work Experience 

Dr. Lalith Pankaj Raj has rich academic and research experience in the field of renewable energy, combining field implementation with high-impact research. He currently serves as a DST INSPIRE Fellow at The Gandhigram Rural Institute, where he is executing a pioneering project on a Combined Solar Photovoltaic-Based Micro Cold Storage–E-Mobility–Nano Grid system to benefit rural farmers. He previously conducted advanced studies on hybrid photovoltaic thermal systems and energy benchmarking for grid-tied solar rooftops in collaboration with REC-IPMT, Ministry of Power. His undergraduate innovations include vehicle emission control systems. His active involvement in field audits, training, and technical assessments reflects hands-on expertise. His career reflects a trajectory of applying research to real-world sustainability and rural development goals.

🏅 Awards and Honors 

Dr. Lalith Pankaj Raj is a recipient of the DST INSPIRE Fellowship from the Department of Science and Technology, Government of India—one of the nation’s most competitive awards for research excellence. He earned a Gold Medal and First Rank in his M.Tech program in Renewable Energy. His academic excellence has been consistently recognized with top scores and distinctions throughout his career, including a perfect CGPA in his Certificate in Energy Auditing. He has been honored for presenting high-impact research and contributing to national renewable energy forums. His Google Scholar metrics (262 citations, h-index 10, i10-index 11) demonstrate academic impact and scholarly recognition. His strong track record of innovation and excellence has earned him national and institutional acclaim.

🔬 Research Focus 

Dr. Lalith Pankaj Raj’s research centers on sustainable energy technologies with applications in rural development. His key areas include solar photovoltaics, thermoelectric refrigeration, electric mobility, vehicle-to-grid integration, smart grids, and energy conservation. His Ph.D. work focuses on a novel solar photovoltaic-based cold storage and nanogrid system aimed at enhancing the livelihoods of rural farmers. He is passionate about building integrated renewable systems, Net Zero energy buildings, and climate change mitigation through energy efficiency. His interdisciplinary work bridges technical innovation and social impact, promoting low-carbon solutions and decentralized energy systems. With a sharp focus on practical implementation and policy relevance, his research contributes to India’s renewable energy transition and aligns with global sustainability goals.

📊 Publication Top Notes:

1. Energy conservation approach for continuous power quality improvement: A case study
Authors: LPR Nadimuthu, K Victor, CH Basha, T Mariprasath, C Dhanamjayulu, et al.
Journal: IEEE Access, Vol. 9, pp. 146959–146969
Citations: 48
Year: 2021

2. Environmental friendly micro cold storage for last-mile Covid-19 vaccine logistics
Authors: LPR Nadimuthu, K Victor
Journal: Environmental Science and Pollution Research, 29(16), 23767–23778
Citations: 39
Year: 2022

3. Performance analysis and optimization of solar-powered E-rickshaw for environmental sustainability in rural transportation
Authors: LPR, GN Kirubakaran V
Journal: Environmental Science and Pollution Research, Vol. 28, pp. 34278–34289
Citations: 32
Year: 2021

4. Energy Efficiency Enhancement and Climate Change Mitigations of SMEs through Grid-Interactive Solar Photovoltaic System
Authors: LPR, GN Kirubakaran V
Journal: International Journal of Photoenergy
Citations: 32
Year: 2021

5. Hybrid photovoltaic-thermal systems: innovative CHP approach
Authors: PRGN Lalith, G Prabakaran, A Murugaiyan, V Kirubakaran
Conference: 4th International Conference on Electrical Energy Systems (ICEES), pp. 726–730
Citations: 19
Year: 2018

6. Simulation and experimental study on performance analysis of solar photovoltaic integrated thermoelectric cooler using MATLAB Simulink
Authors: LPR Nadimuthu, DA Selvaraj, K Victor
Journal: Thermal Science, 26(2 Part A), pp. 999–1007
Citations: 16
Year: 2022

7. Fast thermal degradation of biomass using scrapped solar cell with special focus on photovoltaic (PV) waste disposal
Authors: GN Lalith Pankaj Raj Nadimuthu, VM Karthik, M Mohanraj, V Kirubakaran
Book Chapter: Waste Valorisation and Recycling: 7th IconSWM—ISWMAW 2017, Volume 2, pp. 349–361
Citations: 16
Year: 2019

8. Bench marking of grid tied solar roof top photovoltaic system: a case comparison
Authors: GNP, S. S. Chopade, L. P. Raj
Journal: International Journal of Engineering & Technology, 7(2.33), pp. 553–556
Citations: 15
Year: 2018

9. Optimization of energy-intensive process in ayurvedic medicine manufacturing unit—a case study
Authors: LPR Nadimuthu, K Victor
Journal: Process Integration and Optimization for Sustainability, 5(4), pp. 975–992
Citations: 13
Year: 2021

10. Monitoring and simulation of parabolic trough collector powered vapor absorption refrigeration system for rural cold storage
Authors: DA Selvaraj, LPR Nadimuthu, K Victor
Journal: Thermal Science, 26(2 Part A), pp. 975–982
Citations: 12
Year: 2022

11. Feasibility of renewable energy microgrids with vehicle-to-grid technology for smart villages: A case study from India
Authors: LPR Nadimuthu, K Victor, M Bajaj, MB Tuka
Journal: Results in Engineering, Vol. 24, Article 103474
Citations: 11
Year: 2024

12. An experimental and spectroscopic investigation on pongamia pinata as liquid dielectrics for rural micro grid under various load conditions
Authors: LPR Nadimuthu, NS Moorthy, K Victor, M Thenkaraimuthu, B Khan, A Ali
Journal: Scientific Reports, 14(1), Article 19653
Citations: 3
Year: 2024

13. Waste Valorisation and Recycling
Authors: JP Sarkar, B Das (Book includes contribution by GN Lalith Pankaj Raj Nadimuthu)
Publisher: Springer
Citations: 3
Year: 2019

Winny Andalia | Renewable energy | Best Researcher Award

Assist.Prof.Dr. Winny Andalia| Renewable energy |Best Researcher Award

Assist prof at Universitas Tridinanti , Indonesia.

 

Winny Andalia, S.T., M.T., an Assistant Professor at the University of Tridinanti, exemplifies excellence in applied research and academic leadership. Her multidisciplinary expertise spans chemical engineering, quality control, supply chain management, and public health innovations. She has led over ten funded research projects, published in reputable journals including Scopus-indexed platforms, and authored textbooks that enhance engineering education. Her research impact is reflected in her Scopus H-index of 3 and Google Scholar H-index of 9. As a certified professional in ISO 21008 auditing and supply chain management, and an active reviewer and editor for national and international journals, Winny contributes significantly to scientific advancement and industrial relevance. Her dynamic contributions make her a compelling candidate for the Best Researcher Award.


🌍 Professional Profile:

Google scholar

Scopus

Orcid

🏆 Suitability for the Best Researcher Award

 

Winny Andalia, S.T., M.T., Assistant Professor at the University of Tridinanti, stands out as a dedicated academic and impactful researcher. Her interdisciplinary projects—ranging from sulfuric acid recovery and biodiesel catalyst selection to e-commerce decision modeling—demonstrate innovation and relevance to both industry and society. She has successfully secured funding from national agencies including DIPA UNSRI and LPPM Tridinanti, reflecting confidence in her research capabilities. With certification in ISO 21008 auditing and supply chain management from BNSP, she bridges theory and practice effectively. Her roles as journal editor and reviewer amplify her influence in scientific communication. Through consistent scholarly output, national recognition, and commitment to sustainable development, Winny exemplifies the excellence deserving of the Best Researcher Award.

🎓 Education 

Winny Andalia earned her Bachelor of Engineering (S.T.) and Master of Engineering (M.T.) degrees in fields aligned with chemical and industrial systems, fostering a solid foundation in applied engineering and scientific inquiry. Her academic journey has been marked by a commitment to both theoretical knowledge and practical application, enhanced by professional certifications such as BNSP in supply chain management and ISO 21008 auditing. These credentials complement her formal education and empower her research in quality control, environmental systems, and production analysis. Her continuous learning approach and multidisciplinary academic exposure have equipped her to lead impactful research initiatives and contribute meaningfully to curriculum development and scientific literature within the University of Tridinanti and broader academic community.

🏢 Work Experience 

With extensive experience in academia and research, Winny Andalia has been serving as an Assistant Professor at the University of Tridinanti. Her professional journey includes managing numerous research projects funded by national agencies such as RISTEK DIKTI and KEMDIKBUD-DIKTI, addressing issues from biodiesel production to COVID-19 immunity boosters. She has authored and co-authored textbooks and reference works on topics including calculus, quality control, and reaction kinetics. Her active involvement in academic publishing includes roles as a journal reviewer and editor, further reflecting her expertise and leadership. Certified in ISO auditing and supply chain management, she bridges academia and industry effectively. Winny’s contributions span education, research, and consultancy, positioning her as a respected figure in Indonesia’s scientific and engineering communities.

🏅 Awards and Honors 

Winny Andalia has received multiple forms of recognition for her academic and professional excellence. Her certification by BNSP in supply chain management and ISO 21008 auditing underscores her practical expertise, while numerous research grants from RISTEK DIKTI, LPDP, and KEMDIKBUD-DIKTI highlight her capability to secure and lead impactful national projects. She has been entrusted with editorial and reviewer roles in national and international journals, acknowledging her subject matter authority. Her published works in Scopus and Sinta-accredited journals, along with widely-used textbooks, further validate her academic contributions. Though specific named awards may not be listed, her continuous funding success, publication record, and role in knowledge dissemination signify prestigious professional achievements in Indonesia’s research and higher education landscape.

🔬 Research Focus 

Winny Andalia’s research focuses on sustainable engineering solutions, biodiesel optimization, environmental management, quality control, and public health analytics. Her early work addressed sulfuric acid recovery and catalyst selection for biodiesel production, advancing green chemical processes. She has developed decision-support models for e-commerce and inventory systems, integrating methods like AHP and Statistical Process Control. During the COVID-19 pandemic, she pivoted to public health, researching the effects of immunomodulators and bovine colostrum as immunity boosters. Her recent work investigates converting household waste into bio-oil via pyrolysis. This multidisciplinary approach demonstrates her commitment to solving real-world problems through rigorous data analysis and engineering innovation. Her published research, national funding success, and applied methodologies illustrate a strong impact on both academia and society.

📊 Publication Top Notes:

  • Kinerja Katalis NaOH dan KOH ditinjau dari Kualitas Produk Biodiesel yang dihasilkan dari Minyak Goreng Bekas
    W. Andalia, I. Pratiwi
    Jurnal Tekno Global 7 (2), 36
    Citations: 36 | Year: 2018

  • Taguchi experiment design for DES K2CO3-glycerol performance in RBDPO transesterification
    S. Arita, L.N. Komariah, W. Andalia, F. Hadiah, C. Ramayanti
    Emerging Science Journal 7 (3), 917–927
    Citations: 31 | Year: 2023

  • Analisis karakteristik dan potensi logam pada limbah padat fly ash dan bottom ash di PLTU industri pupuk
    M. Asof, S. Arita, L. Luthfia, W. Andalia, M. Naswir
    Jurnal Teknik Kimia 28 (1), 44–50
    Citations: 12 | Year: 2022

  • Pengendalian Kualitas Pada Produksi Karet Menggunakan Metode Six Sigma (Studi Kasus: PT. Sri Trang Lingga Indonesia)
    E. Parianti, I. Pratiwi, W. Andalia
    Integrasi: Jurnal Ilmiah Teknik Industri 5 (1), 24–28
    Citations: 12 | Year: 2020

  • Penentuan pola distribusi optimal menggunakan metode saving matrix untuk meningkatkan fleksibilitas pemesanan
    W. Andalia, D. Oktarini, S. Humairoh
    Journal Industrial Servicess 7 (1), 23–26
    Citations: 11 | Year: 2021

  • Identifikasi Perawatan Mesin Press Hidrolik Dengan Menggunakan Metode FMEA dan FTA (Studi Kasus di Bengkel Cahaya Ilahi)
    J. Sidik, W. Andalia, T. Tamalika
    Jambura Industrial Review (JIREV) 2 (2), 57–64
    Citations: 10 | Year: 2022

  • Analisis Pemilihan Supplier Menggunakan Metode Analytical Hierarchy Process (Studi Kasus PT. Perkasa Sejahtera Mandiri)
    W. Andalia, I. Pratiwi
    Integrasi: Jurnal Ilmiah Teknik Industri 3 (1), 40–50
    Citations: 9 | Year: 2018

  • Perancangan model keputusan multikriteria pemilihan layanan e-commerce untuk kepuasan pelanggan
    I. Pratiwi, W. Andalia
    Prosiding Semnastek
    Citations: 9 | Year: 2018

  • Recovery of H2SO4 from spent acid waste using bentonite adsorbent
    M. Asof, S.A. Rachman, W.A. Nurmawi, C. Ramayanti
    MATEC Web of Conferences 101, 02007
    Citations: 9 | Year: 2017

  • Pelatihan Pengembangan Produk UMKM di Kecamatan Sako Palembang
    I. Pratiwi, S. Aprilyanti, W. Andalia
    Jurnal Abdimas Mandiri 8 (1), 1–6
    Citations: 8 | Year: 2024

Alexander Kustov | Renewable Energy | Best Researcher Award

 Dr. Alexander Kustov |Renewable Energy
| Best Researcher Award

 

Assistant professor at. Lomonosov Moscow State University, Department of Chemistry, Russia.

Dr. Alexander Kustov is a distinguished Russian chemist specializing in heterogeneous catalysis and nanomaterials. Born on June 1, 1987, he is an Assistant Professor and senior researcher affiliated with Moscow State University (MSU) and the N.D. Zelinsky Institute of Organic Chemistry. With a Scopus Hirsch Index of 25 and 136 Scopus-indexed publications, his research focuses on catalytic oxidation, hydrogenation, and CO₂ conversion. He has contributed to numerous national research projects and led initiatives on sustainable energy and green chemistry. His groundbreaking work has earned him prestigious awards, including the Moscow Government Prize and the Innovator of Moscow award. His expertise in catalysis and environmental chemistry positions him as a leader in sustainable chemical research.

🌍 Professional Profile:

Scopus

Orcid

🏆 Suitability for the Best Researcher Award

 

Dr. Alexander Kustov is a highly accomplished researcher whose contributions to catalysis and nanomaterials have had a significant scientific and environmental impact. His pioneering work in CO₂ conversion, catalytic oxidation, and green chemistry has resulted in 136 Scopus-indexed publications and a Scopus H-index of 25. He has successfully led and participated in numerous government-funded research projects, developing innovative catalysts for sustainable energy applications. His recognition with the Moscow Government Prize and the Innovator of Moscow award highlights his excellence in research. Dr. Kustov’s ability to bridge fundamental chemistry with practical applications makes him a deserving candidate for the Best Researcher Award, recognizing his influential contributions to science and technology.

🎓 Education 

Dr. Alexander Kustov earned a Specialist degree in Chemistry from Moscow State University (MSU) in 2009, specializing in Physical Chemistry. His thesis, titled “Cobaltates of lanthanum LaCoO3 deposited on mesoporous matrices: synthesis, physicochemical and catalytic properties,” was supervised by Prof. Romanovsky B.V. He then pursued doctoral studies at the N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (RAS), obtaining his Ph.D. in 2013. His dissertation, supervised by Prof. Bogdan V.I., focused on “Heterogeneous catalytic oxidation of aromatic compounds, cyclohexane, and dimethyl ether under supercritical conditions.” His academic background has provided a strong foundation in catalysis, nanotechnology, and environmental chemistry, enabling him to contribute significantly to sustainable chemical processes.

🏢 Work Experience 

Dr. Alexander Kustov has extensive research experience in catalysis and nanomaterials. From 2004 to 2009, he was a student researcher at Moscow State University’s “Kinetics and Catalysis” laboratory. He then worked as a research engineer at the N.D. Zelinsky Institute of Organic Chemistry (2009–2013), focusing on heterogeneous catalysis and supercritical fluid processes. Since 2013, he has been a researcher at the same institute and a senior researcher at Moscow State University’s Laboratory of Environmental Chemistry. In 2015, he joined the National Research Technological University “MISiS” as a senior researcher at the Laboratory of Nanochemistry and Ecology. His career is marked by leadership roles in key research projects on CO₂ utilization, catalytic processes, and nanomaterials.

🏅 Awards and Honors 

Dr. Alexander Kustov has been recognized for his outstanding contributions to catalysis and environmental chemistry. In 2022, he received the Moscow Government Prize for advancements in energy efficiency and conservation. In 2023, he won the Innovator of Moscow award for his groundbreaking research in ecology and environmental protection. He has also played key roles in multiple research projects funded by RFBR, RCF, and MISiS, contributing to cutting-edge developments in catalysis, nanomaterials, and CO₂ conversion. His work in sustainable chemistry and novel catalytic systems has established him as a leading scientist in his field, earning him national and international recognition for his contributions to green chemistry and sustainable industrial processes.

🔬 Research Focus 

Dr. Alexander Kustov’s research focuses on heterogeneous catalysis, nanomaterials, and sustainable chemical processes. His expertise includes hydrogenation, dehydrogenation, oxidation reactions, adsorbents, and supercritical fluid chemistry. He has made significant contributions to the conversion of CO₂ into valuable chemical products, carbon dioxide gasification, and biomass utilization. His projects emphasize green chemistry, nanocatalysts, and hybrid materials for sustainable energy applications. Dr. Kustov has also worked extensively on structured nanoscale catalysts, hybrid nanomaterials, and advanced oxidation processes. His research combines fundamental chemical principles with practical applications to address environmental challenges, including carbon capture, energy efficiency, and pollution reduction. His work continues to shape the future of sustainable catalysis and green chemical processes.

📊 Publication Top Notes:

  • Finashina, E.D., Tkachenko, O.P., Kartavova, K.E., Tolkachev, N.N., & Kustov, L.M. (2025). Influence of the Rh Nanoparticle Size and Rh Precursor Nature on Decalin Ring Opening over Rh/Al2O3 Catalysts. Catalysis Letters.

  • Tedeeva, M.A., Mashkin, M.Y., Baybursky, V.L., Kustov, L.M., & Kustov, A.L. (2025). Effect of Chromium Precursor on the Catalytic Behavior of Chromium Oxide Catalysts in Oxidative Propane and Isobutane Dehydrogenation with Carbon Dioxide. Catalysts.

  • Zemlianskii, P.V., Kustov, A.L., Timofeeva, M.N., & Kustov, L.M. (2025). Microwave Irradiation as an Instrument for Tuning of Physicochemical and Catalytic Properties of MFe2O4 Spinels. [No source information available].

  • Makova, A., Tkachenko, O.P., Kapustin, G.I., Ter-Akopyan, M.N., & Kustov, L.M. (2025). Influence of the Ferrierite Zeolite Synthesis Method on Physicochemical and Catalytic Characteristics in the N2O Decomposition Reaction. Arabian Journal for Science and Engineering.

  • Kuz’micheva, G.M., Domoroshchina, E.N., Kravchenko, G.V., Kustov, A.L., & Dorokhov, A.V. (2025). Preparation, Composition, Catalytic Properties of MFI-Type Zeolite Solid Solutions Hx[Al3+x Ti4+ySi4+12−x-yO24] with Al (x < 0.06) and Ti (y < 0.13) Content. Journal of Porous Materials.

  • Medvedev, A.A., Beldova, D.A., Nizameev, I.R., Kustov, A.L., & Kustov, L.M. (2025). Carbon Dioxide-Assisted Gasification of Fresh and Pyrolysis Residues of Macadamia F. Muell Nutshells: The Catalytic Properties of Na, K, and Co. Catalysts.

  • Zemlianskii, P.V., Morozov, D.V., Kapustin, G.I., Kustov, A.L., & Kustov, L.M. (2025). Correlations Between Synthetic Conditions and Catalytic Activity of LaMO3 Perovskite-Like Oxide Materials (M: Fe, Co, Ni): The Key Role of Glycine. ChemPhysMater. (1 citation).

  • Evdokimenko, N.D., Vikanova, K.V., Bazlov, A.I., Kustov, L.M., & Kustov, A.L. (2024). Effect of the Nature of Iron Precursors on the Activity of Fe-Containing Catalysts in CO2 Conversion. Applied Catalysis A: General.

  • Batkin, A.M., Tedeeva, M.A., Kalmykov, K.B., Beletskaya, I.P., & Kustov, A.L. (2024). Producing Methanol from CO2 on Cu–Zn-Catalyst on Commercial Supports: Effect of the Support and Conditions of the Reaction. Russian Journal of Physical Chemistry A.

NTUMBA LOBO | Energy Conversion | Best Researcher Award

 Ms. NTUMBA LOBO| Energy Conversion
| Best Researcher Award

PhD student at Nagoya Institute Of Technology, Japan

Ntumba Lobo is an accomplished researcher currently pursuing her PhD in Electrical and Mechanical Engineering at Nagoya Institute of Technology, Japan. With a strong background in semiconductor materials, nuclear physics, and hydrogen storage, she has conducted extensive research in carrier lifetime measurements and material characterization. Her academic journey spans institutions in Japan, Germany, Ethiopia, and DR Congo, demonstrating her global research exposure. She has participated in prestigious conferences, presenting her work on semiconductors and energy materials. As a research assistant at Nagoya Institute of Technology, she actively contributes to advancing semiconductor technology. Her dedication, technical expertise, and innovative contributions position her as a leading figure in materials science and applied physics.

🌍 Professional Profile:

Orcid

google scholar

🏆 Suitability for the Best Researcher Award 

Ntumba Lobo is a distinguished candidate for the Best Researcher Award, given her exceptional contributions to semiconductor materials and energy storage research. Her work has significantly advanced the understanding of carrier lifetime in semiconductors, benefiting applications in solar cells and optoelectronic devices. She has presented at renowned international conferences, authored impactful publications, and collaborated on interdisciplinary projects. Her research at Nagoya Institute of Technology and Friedrich-Alexander-Universität Erlangen-Nürnberg has led to innovations in semiconductor processing and characterization techniques. She possesses strong analytical skills, experimental expertise, and a commitment to scientific progress, making her a deserving recipient of this honor.

🎓 Education 

Ntumba Lobo’s academic credentials reflect her expertise in materials science, physics, and engineering. She is currently pursuing a PhD in Electrical and Mechanical Engineering at Nagoya Institute of Technology, Japan (2025), focusing on semiconductor materials. She completed her Master’s in Science and Engineering at Shibaura Institute of Technology, Japan (2020), specializing in hydrogen storage materials. Her M.Sc. in Nuclear Physics from Addis Ababa University, Ethiopia (2016) involved research on fusion reactions in nuclear materials. She earned her B.Sc. (Honors) in Physics from the University of Kinshasa, DR Congo (2012), conducting research on non-destructive concrete characterization using ultrasound. Additionally, she was an exchange student at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, where she worked on semiconductor crystallization techniques.

🏢 Work Experience 

Ntumba Lobo has extensive experience in research, teaching, and industry internships. Since 2020, she has been a Research Assistant at Nagoya Institute of Technology, working on semiconductor material development. She has completed internships at OSM Group Co., Ltd. (Japan) and For Delight Co. Ltd. (Japan), where she gained practical expertise in materials engineering and electronics. Previously, she conducted nuclear physics research at Centre Régional de Recherche Nucléaire, Kinshasa. She also served as a teaching assistant at the University of Kinshasa, mentoring students in physics and engineering principles. Her experience includes scientific research, material characterization, and experimental physics, making her a well-rounded researcher in semiconductor technology and applied materials science.

🏅 Awards and Honors 

Ntumba Lobo has received numerous recognitions for her contributions to semiconductor materials, nuclear physics, and hydrogen storage research. She has been invited to present at international conferences, including the Solid-State Devices and Materials Conference (Japan), MRS Tanzania Conference, and Metal-Hydrogen Systems Symposium (China). Her research on carrier lifetime measurements and recombination velocity in lithium tantalate has been widely cited. She has been awarded scholarships and research grants to support her studies at Nagoya Institute of Technology, Shibaura Institute of Technology, and Addis Ababa University. Her work in materials engineering, energy storage, and semiconductor characterization has earned her fellowships and international research funding, cementing her reputation as a leading researcher.

🔬 Research Focus 

Ntumba Lobo’s research spans semiconductor materials, energy storage, and nuclear physics. She specializes in carrier lifetime analysis, surface recombination velocity, and semiconductor device optimization. Her contributions to metal halide perovskites, lithium tantalate, and hydrogen storage materials have direct applications in renewable energy and electronics. She has developed novel techniques to mitigate carrier trapping effects, enhancing the efficiency of solar cells and optoelectronic devices. Her interdisciplinary approach integrates solid-state physics, material science, and applied engineering to develop next-generation semiconductor devices and energy storage solutions. With a strong background in both experimental and computational methods, she continues to drive innovation in semiconductor characterization and sustainable energy materials.

📊 Publication Top Notes:

  • Lobo, N., Takasaki, A., Mineo, K., Klimkowicz, A., & Goc, K. (2019). Stability investigation of the γ-MgH₂ phase synthesized by high-energy ball milling. International Journal of Hydrogen Energy, 44(55), 29179-29188.

  • Kimilita, P. D., Hayashi, M., Nkomba, H. M., Fukunishi, H., Lobo, N., Mizuno, T., … (2023). Stable quasi-solid-state zinc-ion battery based on the hydrated vanadium oxide cathode and polyacrylamide-organohydrogel electrolyte. Electrochimica Acta, 462, 142702.

  • Lobo, N., Kawane, T., Matt, G. J., Osvet, A., Shrestha, S., Ievgen, L., Brabec, C. J., … (2022). Trapping effects and surface/interface recombination of carrier recombination in single-or poly-crystalline metal halide perovskites. Japanese Journal of Applied Physics, 61(12), 125503.

  • Lobo, N. T. (2016). Study of ²⁰Ne induced reaction in ⁵⁹Co: Incomplete and complete fusion. Addis Ababa University.

  • Lobo, N., Klimkowicz, A., & Takasaki, A. (2020). Effect of TiO₂ + Nb₂O₅ + TiH₂ catalysts on hydrogen storage properties of magnesium hydride. MRS Advances, 1-11.

  • Lobo, E. N. (2010). La super symétrie en physique quantique. Université de Kinshasa.

  • Lobo, N., Matt, G. J., Osvet, A., Shrestha, S., Kanak, A., Fochuk, P., Brabec, C. J., … (2024). Mitigation of carrier trapping effects on carrier lifetime measurements with continuous-wave laser illumination for Pb-based metal halide perovskite materials. Journal of Applied Physics, 135(7).

Muthurasu A | Electrochemistry | Best Researcher Award

Dr. Muthurasu A | Electrochemistry | Best Researcher Award

Jeonbuk National University, South Korea

👨‍🎓Profiles

🧑‍🎓 Early Academic Pursuits

He began his academic journey with a Bachelor of Science (B.Sc.) and Master of Science (M.Sc.) in General Chemistry from The American College, Madurai, India. His strong foundation in chemical sciences led him to pursue a Ph.D. in Chemical Science at the Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, where he excelled in electrochemical research and material synthesis.

🏛️ Professional Endeavors

He is currently a Postdoctoral Research Fellow at Jeonbuk National University, Republic of Korea, under the prestigious Brain Korea 21 program. With an extensive career spanning over a decade, he has also served as a Junior and Senior Research Fellow at the Council of Scientific & Industrial Research (CSIR), India, and as a Project Assistant at the Central Electrochemical Research Institute. His work experience reflects his versatility in both academic and industrial settings.

💡 Contributions and Research Focus

His research primarily focuses on designing efficient electrocatalysts for energy storage and conversion systems, including fuel cells, water electrolysis, CO2 reduction, lithium-ion batteries, and metal-air batteries. His notable contributions include: Synthesis of nitrogen-doped graphene quantum dots, Developing cobalt oxide nanocomposites for bifunctional electrocatalysts, Pioneering work on metal-organic frameworks (MOFs) for zinc-air and lithium-air batteries, Optimization of nanomaterials for energy applications.

🌍 Impact and Influence

He has significantly influenced energy research through his innovative methodologies and collaborative work. His achievements include securing a National Research Fellowship from South Korea (USD ~$90,000) and contributing as a reviewer for high-impact journals like Journal of Hydrogen Energy, Electrochimica Acta, and ACS Applied Energy Materials.

📖 Academic Citations and Publications

With a robust research portfolio, He has authored four corresponding-author papers in top-tier journals. His work is well-cited, highlighting his influence in advancing chemical engineering and nanotechnology for energy systems.

🛠️ Technical Skills

He is proficient in various advanced characterization techniques, including electrochemical, spectroscopic, and microscopic methods. He also has expertise in the design and development of electrodes for batteries, fuel cells, and supercapacitors, showcasing his technical acumen in experimental science.

🎓 Teaching and Mentorship Experience

As a mentor, He has supervised four Ph.D. students and three Master’s students, guiding them in cutting-edge research on MOF-interpreted carbon nanofiber electrocatalysts and water-splitting devices. His dedication to education extends to mentoring undergraduate projects and contributing to student growth.

🌟 Awards and Recognitions

He has been recognized with several accolades, including: Best Oral Award at the BIN Conference, Jeonbuk National University, Best Oral Award at the 19th Convention of Electrochemistry, NIT, Trichy, Junior and Senior Research Fellowships by CSIR, India, GATE Qualification with a national rank of 946, India.

📈 Legacy and Future Contributions

He envisions a sustainable future through innovative energy solutions. His ongoing projects aim to revolutionize portable energy storage and conversion devices using MOFs and advanced nanomaterials. As a leader and researcher, his legacy lies in pioneering energy technologies that balance performance and sustainability.

📖Notable Publications

  1. Development of a free-standing flexible electrode for efficient overall water-splitting performance via electroless deposition of iron-nickel-cobalt on polyacrylonitrile-based carbon cloth
    • Authors: Chae, S.-H., Young Lee, C., Jae Lee, J., Muthurasu, A., Kyoung Shin, H.
    • Journal: Journal of Colloid and Interface Science
    • Year: 2025
  2. Functionalized Triangular Carbon Quantum Dot Stabilized Gold Nanoparticles Decorated Boron Nitride Nanosheets Interfaced for Electrochemical Detection of Cardiac Troponin T
    • Authors: Kim, S.E., Yoon, J.C., Muthurasu, A., Kim, H.Y.
    • Journal: Langmuir
    • Year: 2024
  3. Multiphase lattice engineering of bimetallic phosphide-embedded tungsten-based phosphide/oxide nanorods on carbon cloth: A synergistic and stable electrocatalyst for overall water splitting
    • Authors: Acharya, D., Chhetri, K., Pathak, I., Hoon Ko, T., Yong Kim, H.
    • Journal: Chemical Engineering Journal
    • Year: 2024
  4. Fluorescence immunoassay using triangular carbon dots for detection of the cardiac marker Troponin T in acute myocardial infarction
    • Authors: Kim, S.E., Yoon, J.C., Muthurasu, A., Kim, H.Y.
    • Journal: Sensors and Actuators B: Chemical
    • Year: 2024
  5. Interfacial Electronic Modification of Nickel Phosphide via Iron Doping: An Efficient Bifunctional Catalyst for Water/Seawater Splitting
    • Authors: Muthurasu, A., Ko, T.H., Kim, T.W., Chhetri, K., Kim, H.Y.
    • Journal: Advanced Functional Materials
    • Year: 2024
  6. Electronically modulated bimetallic telluride nanodendrites atop 2D nanosheets using a vanadium dopant enabling a bifunctional electrocatalyst for overall water splitting
    • Authors: Pathak, I., Muthurasu, A., Acharya, D., Ko, T.H., Kim, H.Y.
    • Journal: Journal of Materials Chemistry A
    • Year: 2024
  7. Highly Porous Metal-Organic Framework Entrapped by Cobalt Telluride-Manganese Telluride as an Efficient Bifunctional Electrocatalyst
    • Authors: Rosyara, Y.R., Muthurasu, A., Chhetri, K., Lee, D., Kim, H.Y.
    • Journal: ACS Applied Materials and Interfaces
    • Year: 2024